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Abstract

In this thesis, we describe the realization of a novel optical dipole trap for
erbium atoms. The trap is based on time-averaged potentials and is thus tun-
able in geometry. We investigate both theoretically and experimentally the
dynamic polarizability of ground-state erbium atoms. The polarizability is a
very important quantity for the understanding of the atomic properties of er-
bium and, prior to this thesis, its value was unknown. We measure a dynamic
polarizability of Re(α) = (84 ± 2 ± 18) a.u. for erbium atoms in a 1064-nm
laser field, which is 47% lower than the one we calculated based on the best
knowledge of the erbium atomic spectrum. This discrepancy might points to
a too rough knowledge of the atomic level structure or to novel unexpected
effects arising in sub-merged shell atoms. Further investigations both in theory
and experiments are highly needed.

For our novel optical dipole trap setup we use a scanning system consisting
of an acousto-optical modulator, electronics and a customized optical setup.
The dipole trap beam is shifted perpendicular to its horizontal axis, creating
time-averaged potentials when the scan over a range of positions is fast enough
compared to the trap frequency. The aspect ratio of the dipole trap can be
tuned from 1.5 to 15. With the new dipole trap system we can load up to
35% of MOT atoms to the dipole trap, which is related to mode-matching
arguments. Further the density at each evaporation step can be optimized,
leading to a large overall evaporation efficiency of 3.5. This improvements
result in up to three times larger numbers in the pure BEC compared to our
previous experiments.

With the new tunable dipole trap we are confident that in future we can
investigate geometry-dependent anisotropic quantum effects, unique to dipolar
gases.
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Chapter 1

Introduction

Experiments on ultracold gases deal with atomic systems at temperatures near
the absolute zero, where the atoms start to reveal their quantum behavior.
Ultracold atomic gases provide an unprecedented level of control over many
external and internal degrees of freedom. Remarkably, the interparticle inter-
action and the confining geometry can be changed almost "on demand", giving
access to the investigation of various exciting phenomena belonging to a wide
range of physical researches. Quantum simulations [Fey82], high-temperature
superconductivity [Chi06], condensed matter [Gre08], few body physics [Fer10]
and quantum chemistry [Osp10] just name a few of these phenomena.

The first experimental realization of a Bose-Einstein condensate (BEC)
in 1995 [And95, Bra95, Dav95] marked the starting point of a new field in
physics. The attainment of quantum degenerate Fermi gases further pushed the
interest on this still rapidly growing field [DeM99, Sch01b, Tru01]. The level
of control was increased by the ability to modify the interparticle interaction
via Feshbach resonances [Chi10]. This controllability leaded to the observation
of various fascinating phenomena, such as the superfluid to Mott insulator
transition [Gre02] or the creation of weakly bound dimer states [Win06, Joc03,
Fer09]. Even though the list of exciting results could be almost arbitrarily
extended, all of these physical pioneering works were performed with elements
from the alkali series, where the interaction is ruled by the surprisingly simple
isotropic and short-range contact interaction.

To make the story even more exciting, efforts were taken to explore novel
systems, in which the particles additionally interact via an anisotropic and
long range interaction, called dipole-dipole interaction (DDI). Polar molecules
and polar atoms carry an electric and a magnetic dipole moment, respectively,
and, therefore, give access to the DDI. Because of the DDI new fascinating
quantum phases are expected, which in particular depend on the trapping
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1 INTRODUCTION

geometry [Lah09, Bar08].
The first species used to study dipolar effects in experiments was chromium

[Gri05, Bea08]. Among many fascinating phenomena the observation of the d-
wave collapse of a Bose gas stands out [Lah08]. In order to deepen the experi-
mental possibilities on dipolar physics novel species with even higher magnetic
moments have become promising candidates in ultracold experiments. The re-
cent realization of a BEC and a quantum degenerate Fermi gas of dysprosium
by the group of B. Lev at Stanford [Lu11, Lu12] and the BEC of erbium by
our group in Innsbruck [Aik12] promise to open a new chapter in the field of
dipolar gases.

Erbium is part of the lanthanide series and has a rich energy spectrum. Due
to its multivalence-electrons character complex scattering properties are ex-
pected. The investigation of optical transitions in erbium opened the possibility
to control this species by means of laser cooling techniques [Ban05, McC06b].

The first goal of our experiment was to reach a BEC. In march, 2012 we
could set an end to this over two years lasting journey. Worldwide we have
been the first to cool down erbium to quantum degeneracy [Aik12]. In our
experiment we load erbium atoms from the MOT to an optical dipole trap
and evaporatively cool them down.

The purpose of my master thesis was to design an optical dipole trap with
tunable geometry. This was realized by means of a scanning system, which can
create time-averaged potentials. This improvement gave us the possibility to
dynamically optimize the efficiencies in the loading and the evaporation phase
of our experiment. Furthermore, the flexible geometry opens access to the in-
vestigation of various fascinating geometry-dependent quantum effects, unique
to dipolar gases [Lim11, San03, Bla12]. To gain a deeper understanding of the
dipole trap for erbium I also focused on the development of a mathematical
model on dipole traps. This model calculates the dynamic polarizability of er-
bium taking all dipole allowed transitions into account. The difficulty of this
calculation is connected to the complex and rather unknown energy spectrum
of erbium [Ral11, Ban05]. Furthermore, with this model the trapping geometry
of the dipole trap configuration in our experiment can be fully simulated.

This thesis is structured as follows. In Chap. 2 we present the properties of
erbium and focus on the energy spectrum of erbium. Furthermore, the up-to-
date known scattering properties of erbium are discussed. Chapter 3 reviews
the theory of optical dipole traps and outlines the influence of the dipole effect
on erbium atoms. The mathematical model used to calculate dipole trap pa-
rameters for erbium at our experiment is explained. Chapter 4 focuses deeply
on the investigation of the atomic polarizability of erbium. In Chap. 5 the op-
tical and electronic setup of the scanning system is discussed, as well as the
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1 INTRODUCTION

performance of the scanning system is characterized. Chapter 6 investigates
the trapping geometry of the new dipole trap for erbium atoms and shows the
measurement of the dynamic polarizability of erbium. The production of the
new, improved Er-BEC is discussed. Finally, Chap. 7 concludes and outlines
future experiments being accessible with the new dipole trap system.
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Chapter 2

Erbium

Ultracold gases are ideal systems to observe exciting many- and few-body
quantum effects. In recent years there is an increasing interest on the inves-
tigation of non-alkali atoms. Such species have rich atomic spectra, opening
possibilities for novel laser cooling approaches and leading to fascinating in-
teraction properties. Particularly interesting are multi-valence-electron atoms
with a non-S electronic ground state, such as lanthanides. The interaction of
alkali atoms can be described by a short-range and isotropic contact potential.
Lanthanide atoms, such as erbium, provide a large magnetic dipole moment,
leading to a long-range and anisotropic dipole-dipole interactions [Lah09]. This
interaction is expected to give access to unexplored physical scenarios [Gor00].

In this Chapter, we briefly discuss the main properties of erbium and will
then focus on the energy spectrum and the interaction of erbium atoms. For a
closer insight into the properties of erbium see e.g. Ref. [Sch11].

2.1 A glance at erbium

General properties

Erbium (Er) is part of the lanthanide series and has an atomic number of 68.
It is a soft, silver-colored metal, which has a comparatively high melting point
of about 1530 ◦C [Jam92]. Erbium has six stable isotopes with masses ranging
from 162 to 170 amu. Table 2.1 shows the natural abundance and nuclear spin
of each isotope. There are three bosonic isotopes with a natural abundance
exceeding 14%. Remarkably, the natural abundance of the fermionic isotope is
extremely high compared to the typically used fermionic species 40K [DeM99]
and 6Li [Sch01a] belonging to the alkali class. This is a very favorable feature
for experiments on degenerate Fermi gases.

5



2 ERBIUM

Table 2.1: Natural abundance and nuclear spin quantum number I of all
staple erbium isotopes.

mass m (amu) abundance (%) nuclear spin I statistic
162 0.1 0 boson
164 1.6 0 boson
166 33.5 0 boson
167 22.9 7/2 fermion
168 27.0 0 boson
170 14.9 0 boson

4f-block atoms

Several species from the lanthanides, among which erbium, are also known as
atoms of the 4f -block. They are named in this way because of an unfilled 4f
inner shell, shielded by a closed outer shell. This peculiarity plays a crucial role
in the atom behavior. In the case of erbium, the electronic configuration of the
ground state reads as [Xe]4f 126s2. The [Xe]-like core indicates that all shells are
filled up to the 5p shell. From the 14 valence electrons only 12 are located in the
4f shell, leading to a two-electron vacancy. The two remaining electrons fill up
the 6s shell. This leads to the so-called submerged shell structure. The f -shell
is characterized by a strong anisotropy in the electron density distribution.
One of the most relevant consequences is the large magnetic moment endowed
by such atoms.

Another important feature is that the ground state of erbium has large
quantum numbers. The bosonic erbium isotopes have a nuclear spin quantum
number I of zero. Therefore the used quantum number to describe transitions
in erbium is the total angular momentum quantum number J . For the ground
state this quantum number yields J = 6. The fermionic isotope 167Er has a
nuclear spin quantum number I of 7/2, which leads to a hyperfine structure.
The ground state splits up to eight hyperfine states from F = 19/2 to F = 5/2.
The magnetic quantum numbers mJ are the projection of the total angular
momentum quantum number and range between -6 and 6.

In erbium the valence electrons couple in a LS-scheme to the 3H6 term of
the ground state; see Fig. 2.1, leading to a large orbital angular momentum
of L = 5. Due to the non-S ground state an anisotropy in the interaction of
atoms is expected [Kre04].
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2.2. Energy spectrum of erbium atoms

2.2 Energy spectrum of erbium atoms
The rich and complex energy spectrum of erbium is shown in Fig. 2.1. From
the NIST Atomic Spectra Database [Ral11] there are 672 excited states known
with J values ranging from 1 to 12. The energy of the excited states in rela-
tion to the ground state ranges from 5035 to 46971 cm−1 and the ionization
limit is 49262 cm−1. Black and red lines indicate even and odd parity states,
respectively. Only levels with J values ranging from 5 to 7 and even parity can
couple to the ground state via optical dipole transitions. These transitions are
shown in Fig. 2.2. The natural linewidths ∆ν of these states are located in a
wide range from the MHz to the subHz regime.

To describe the quantum states of erbium two different angular momenta
coupling schemes are needed. In the spin-orbit (LS-) coupling the individual
electronic orbital angular momenta ~l and spins ~s add to the total orbital an-
gular momentum ~L and to the total spin ~S, respectively. Finally they couple
to the total angular momentum ~J = ~L + ~S [Dem05]. In erbium the 4f 126s2

electrons of the outer shells follow these coupling scheme forming the 3H6

term of the ground state1. Other levels of erbium have to be described by
J1J2 coupling. In this case the 4f and the 6s electrons couple independently
in a LS-coupling scheme. The formed states ~J1 and ~J2 add then up to a total
angular momentum.

For laser cooling of erbium atoms at our experiment we use the strong
401-nm transition and the narrow 583-nm transition. These transitions were
proposed in Ref. [Ban05]. The 401-nm line is used for the Zeeman slower (ZS)
and has a linewidth of 29.7 MHz; see Fig. 4.2. For the operation of the magneto-
optical trap (MOT) we use the 583-nm line, which has a linewidth of ∆ν = 190
kHz. At this transition one of the valence electrons is excited to the 6p shell,
thereby changing its spin. This kind of transitions are forbidden in LS-coupling
and are called intercombination lines. This leads to the observed narrower
linewidth. For evaporative cooling we use an optical dipole trap (ODT) op-
erating at a wavelength of 1064 nm. The contribution of every dipole allowed
transition to the trapping potential is discussed in Sec. 4.1.

1The term symbol for this quantum state is (2s+1)LJ where L = 5 is correlated to the
letter H.
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Figure 2.1: Full energy spectrum of erbium with total angular momentum
quantum numbers J ranging from 1 to 12. The energy is given with respect
to the ground state [Xe]4f126s2(3H6). Red lines have even parity where black
lines have odd parity. The data were taken from [Ral11].
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Figure 2.2: Zoom of the energy levels relevant for laser cooling. The excited
level with odd parity (black line) can couple to the ground state 4f126s2(3H6)
via optical dipole transition. The blue and the yellow arrow indicate the levels,
which are used for the deceleration of atoms in the ZS and the capturing of
atoms in the MOT, respectively. The red arrow shows the energy of the used
ODT laser. The data were taken from [Ral11].
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2.3 Interaction between erbium atoms
For the achievement of quantum degeneracy the scattering properties play
a crucial role. An important quantity is the background scattering length a,
which is an intrinsic property of a specific isotope and describes the strength of
the contact interaction between the atoms. For erbium, a is so far not known.
During this thesis work we could Bose condense the 168Er isotope by means of
evaporative cooling. This already indicates a favorable background scattering
length a for experimental work2. In theory the interaction is described by the
isotropic van der Waals C6 value and scales with the interatomic distance R
as 1/R6. For non-S state atoms, such as erbium, additionally to the isotropic
contact interaction anisotropic interactions are expected [Kre04].

Anisotropy in the interaction

In the case of dysprosium the anisotropy in the interaction was discussed by
Kotochigova et al. [Kot11]. For erbium a similar behavior is expected. It is
shown that the van der Waals potential also has a long-range part, which
strongly depends onmJ . This is a consequence of an anisotropic coupling of the
open f -shell electrons of the two atoms. Different projection quantum numbers
of the total angular momentum lead to a spread of the C6 value. This spread
is defined by the anisotropic dispersion potential ∆C6/R

6. Additionally there
can be found a magnetic dipole-dipole interaction (DDI) and an electrostatic
quadropole-quadropole interaction. The DDI scales as C3/R

3 where C3 has an
angle dependence and will be discussed later.

Due to these interactions higher partial waves can couple with each other,
which can lead to inelastic losses. Figure 2.3 shows that, depending on the
interatomic distance, different interactions are dominant. At small separation
the anisotropic interactions lead to mixing of rotational levels, where at large
R the Zeeman splitting dominates.

The presence of anisotropy also changes the nature of Feshbach resonances.
Due to the anisotropy couplings to bound states with non-zero l can occur.
Therefore, for submerged-shell atoms multiple Feshbach resonances are pre-
dicted [Pet12]. In our experiment we already could confirm this theoretical
prediction by finding not less than six resonances in a narrow magnetic-field
range up to 3 G; see Appendix C.

2Preliminary cross-dimensional thermalization measurements give a168Er = 180± 50 a0.
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2.3. Interaction between erbium atoms

Figure 2.3: Level splitting due to interactions between two Dy atoms as a
function of their interatomic seperation. For short distances R of the atoms
the energy shifts of the anisotropic interactions are dominant over the Zeeman
shifts, leading to mJ -changing collisions. The graph is taken from [Kot11].

Magnetic properties

One of the anisotropic interactions giving rise to novel scattering behavior is
the magnetic dipole-dipole interaction, which is related to the magnetic dipole
moment. The ground state of erbium has a total angular momentum quantum
number J of 6 and a magnetic quantum number mJ of 6. This leads to a Landé
g-factor gJ of 1.16. The magnetic moment µ is calculated by

µ = gJmJµB. (2.1)

For the ground state of erbium atoms this gives µ = 6.98µB, which is about
seven times larger than the magnetic moment of alkali atoms. For two polarized
magnetic dipoles the DDI is defined as

Udd =
C3

|~r|3
=
µ0µ

2

4π

1− 3cos2(θ)

|~r|3
, (2.2)

where ~r is the relative coordinate between the dipoles, θ is the angle between
the quantization axis and the interatomic axis, defined by ~r [Lah09] and µ0

is the magnetic constant. In contrast to the short range contact interaction,
which scales with 1/|~r|6, the DDI scales with 1/|~r|3, and is thus a long-range
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interaction. The anisotropy of the DDI is indicated by the dependence on the
angle θ. When the dipoles are placed side-to-side they repel each other, while
a head-to-tail configuration leads to attraction. The characteristic length scale
for the DDI of erbium is

add =
mµ0µ

4π~
= 201 a0, (2.3)

where m is the mass of erbium and a0 is the Bohr radius [Bar08]. The large
mass of erbium enhances the dipolar character.

As discussed earlier due to the anisotropic DDI novel collisional behav-
ior is expected, since also higher partial waves can couple with each other.
This coupling could, for example, induce collisions between ultracold identical
fermions, which are usually forbidden by the Pauli exclusion principle [Bar08].
This opens up new possibilities for experiments on degenerate Fermi gases.

To visualize the DDI one can "turn off" the contact interaction by tuning
the scattering length via Feshbach resonances, leading to a d-wave collaps of
the atomic cloud. For the collapse the relative strength of the dipolar and the
contact interaction has to be compared. The collapse occurs when [Lah08]

εdd =
add
3a
≥ 1. (2.4)

As a proof-of-principle experiment this collapse was also shown at our experi-
ment; see Appendix C.

Scattering experiments

Scattering experiments on submerged-shell atoms are a new and challenging
field. In the case of erbium the scattering behavior is only weakly known. In
2004 it was shown that erbium can successfully be trapped in a He buffer
gas cooled magnetic trap at temperatures below 1 K [Han04]. This indicated,
that in Er-He collisions the interaction anisotropy can be suppressed by the
spherically symmetric 6s-shell, allowing magnetic trapping and evaporative
cooling. However, this conclusion could not hold for Er-Er collisions. In 2010
large spin relaxation rates of erbium in a magnetic trap at temperatures near
500 mK were measured, implying that evaporative cooling in magnetic traps
will be highly inefficient [Con10]. In our experiment an optical dipole trap is
used to evaporative cool erbium atoms. Chap. 3 gives a theoretical discussion
on dipole traps for erbium.

The goal of our experiment is to further investigate the scattering properties
of erbium. The observations of the dipolar collapse and the first Feshbach
resonances lead in the right direction.

12



Chapter 3

Optical dipole trap

In recent years new atomic species have been used in ultracold experiments to
study novel physical phenomena. It has been discovered that for some species
magnetic traps are not appropriate for loading and evaporative cooling of
atoms because of large collisional relaxation rates [Söd98, Con10]. This has
led to the investigation of optical dipole traps, which are nowadays a crucial
tool in many ultracold experiments. In this Chapter we will give an overview
on the basic mechanism at the foundation of the interaction between light field
and atoms, which is at the origin of a trapping potential. Furthermore, we will
discuss this interaction in the case of erbium, which is correlated to the atomic
polarizability1 of erbium. Finally, we will introduce the theoretical model that
we use to simulate the trapping potential at our Er-experiment.

3.1 Theoretical background
An intuitive picture of the dipole force acting on the atoms can be obtained
by considering the case of a classical oscillator [Phi92]. By placing a neutral
atom in an oscillating electric field, e.g. laser field, the centers of mass of both
the positive and negative charge are separated by the field. This separation
leads to an induced electric dipole moment in the atom. The atom can then
be treated as a dipole that interacts with the driving field. When the dipole
is driven below resonance it oscillates in phase with the field and when it is
driven above resonance it oscillates out of phase. Below (above) resonance the
interaction energy is negative (positive) and therefore the atom is roped into
(out of) the region with the highest intensity of the electric field. For atoms the

1The atomic polarizability describes the coupling strength of an atom to an electromag-
netic field and can, therefore, be used to calculate the potential depth of an optical dipole
trap.
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3 OPTICAL DIPOLE TRAP

resonance frequency is defined by the energy of the excited state with respect
to the ground state. We call the driving field red-detuned when its frequency
is below resonance and blue-detuned when it is above resonance. Laser beams
can be described by Gaussian beams, where the intensity profile has a Gaussian
shape. This means that the intensity is the highest in the center of the beam
and decreases with radial and axial distance. Due to these facts one can create
a trap by sending red detuned laser light on atoms. All atoms will be pushed
to the center of the beam and thus can minimize their energy.

Of course the dipole force can also be seen as an scattering process of an
atom and a photon. Usually the photon is absorbed by the atom and then
spontaneously re-emitted, each time leading to a momentum transfer. In con-
trast to normal scattering for far-detuned light absorption and emission cannot
be seen as independent events anymore. This is the correlation, which leads to
the non dissipative nature of the dipole force.

The mathematical discussion in the next section follows the review article
of Grimm et. al [Gri00].

3.1.1 The oscillator model

An electric field ~E(~r) with frequency ω induces an electric dipole moment in
an atom given by

~p(~r) = α~E(~r). (3.1)
α is the complex polarizability of the atom and depends on the atomic species,
the light frequency ω and the polarization of the electric field. From this rela-
tion one can calculate the potential rising from the interaction of ~p and ~E:

Udip(~r) = −1

2
〈~p(~r) ~E(~r)〉 = − 1

2ε0c
Re(α)I(~r). (3.2)

Here the relation for the field intensity I(~r) = 2ε0c| ~E(~r)|2 is used, ε0 being the
dielectric constant and c the speed of light in vacuum. The real part of the
polarizability accounts for the in-phase oscillation.

In addition to the generated potential the driven oscillator absorbs energy,
which is then re-emitted as dipolar radiation. One can describe this absorption
by the out of phase component, thus the imaginary part of the polarizability:

Pabs = 〈~̇p ~E〉 =
ω

ε0c
Im(α)I(~r). (3.3)

This absorption can be seen as a photon scattering process and, therefore, the
scattering rate can be written as

Γsc(~r) =
Pabs
~ω

=
1

~ε0c
Im(α)I(~r), (3.4)
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3.1. Theoretical background

~ being the Planck constant divided by 2π.

In general it is very difficult to calculate the atomic polarizability α, but
there exist theoretical models, which make this calculation more easy. For
the calculation one can either use the classical Lorentz-oscillator model or a
semiclassical approach. In the classical model an electron is bound elastically to
the atom core and oscillates with the eigenfrequency ω0, which is the optical
transition frequency of a two-level atom. This oscillation is damped due to
radiative energy loss. The damping rate is proportional to the spontaneous
decay rate Γ of the excited level. The spontaneous decay rate Γ is correlated to
the natural linewidth ∆ν with Γ = 2π∆ν. The semiclassical approach considers
an atom as a two-level quantum system in a classical radiation field. The case of
a far-detuned electric field is of particular interest for us, because the scattering
rate becomes very low and, therefore, heating processes can be neglected. In
this case both models give the same result and thus the atomic polarizability
can be extracted. For large detunings the following expressions for the dipole
potential and the scattering rate can be derived [Gri00]:

Udip(~r) = −3πc2

2ω3
0

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)
I(~r), (3.5)

Γsc(~r) =
3πc2

2~ω3
0

(
ω

ω0

)3(
Γ

ω0 − ω
+

Γ

ω0 + ω

)2

I(~r). (3.6)

These two equations are probably the most important relations to under-
stand the physics of dipole traps using far-detuned laser fields. Equation (3.5)
indicates, that the sign of the dipole potential depends on the sign of the
detuning ∆ = ω − ω0 (∆ < 0: red detuning; ∆ > 0: blue detuning). This
is the mathematical explanation of the above-discussed "intuitive picture". If
the laser frequency is smaller (larger) than the atomic resonance frequency, the
dipole potential is negative (positive) and, therefore, atoms are located at the
region with maximum (minimum) intensity of the laser beam. The comparison
of Eq. (3.5) and Eq. (3.6) also shows why usually far-detuned laser light is used
for optical dipole traps. As Udip scales with I

∆
and Γsc scales with I

∆2 it is clear
that the scattering rate can be suppressed for large detunings.

3.1.2 Multilevel atoms

The following model provides a picture on the interaction between a light
field and an atom, which can be used for atoms with more than two internal
energy states. To extend the above discussed model to a multilevel quantum
system we have to introduce the influence of a far-detuned electric field on all
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3 OPTICAL DIPOLE TRAP

the atomic levels. Mathematically this influence is treated as a second-order
time-independent perturbation with interaction Hamiltonian H1 = µE, where
µ = −e~r represents the electric dipole operator.

Two-level system

For a two-level atom the coupling to the electric field leads to an energy shift
of the ground state:

∆E =
|〈e|µ|g〉|2

∆
|E|2, (3.7)

which is nothing else than the ac-Stark shift. For the excited state the shift
is the same but with opposite sign. |〈e|µ|g〉| is the dipole matrix element be-
tween the ground state |g〉 and the excited state |e〉 and corresponds to the
spontaneous decay rate Γ of the excited state:

Γ =
ω3

0

3πε0~c3
|〈e|µ|g〉|2. (3.8)

Because of these relations the energy shift by the light, corresponding also to
the dipole potential seen by the atoms, only depends on the spontaneous decay
rate Γ, the detuning ∆, and the intensity I of the laser light. Figure 3.1(b)
shows the ac-Stark shift for a two-level atom due to an electric field. Applying
a Gaussian laser beam generates a trapping potential for atoms in their ground
state as depicted in 3.1(c).

Multi-level system

For a multilevel atom all allowed transitions from a ground state |gi〉 to an
excited state |ej〉 are involved. Dipole transitions are only allowed when the
total angular momentum quantum number J changes by 0,±1 with respect to
the ground state and the parity of the excited state is different2[Dra96]. For
the contribution of each excited state to the ac-Stark shift, furthermore, the
real transition coefficients cij have to be taken into account. These transition-
dependent factors determine the specific dipole matrix elements

µij = cij||µ||, (3.9)

where ||µ|| is the fully reduced matrix element, which is related to the sponta-
neous decay rate Γ according to Eq. (3.8). The transition coefficients cij, which

2The parity gives information about how the electronic wave function ψ(~r) is inverted
through the origin. For ψ(−~r) = ψ(~r) the parity is even, where for ψ(−~r) = −ψ(~r) the
parity is odd.
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3.1. Theoretical background
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Figure 3.1: Schematic of the ac-Stark shift of a two-level atom for red-detuned
light with intensity I (b). ∆Eg and ∆Ee are the energy shifts of the ground
state |g〉 and the excited state |e〉, respectively. In (c) the potential seen by an
atom in a Gaussian beam with peak intensity I0 and beam waist w0 is shown.

consider the coupling strength between specific sub-levels |gi〉 and |ej〉, depend
on the laser polarization and the electric angular momenta involved. They can
be calculated with the use of the 3J-symbol to

c2
ij = (2Jj + 1)

(
Ji 1 Jj
mi p −mj

)2

, (3.10)

where Ji and Jj are the total angular momenta of the states |gi〉 and |ej〉,
respectively. The parameters mi and mj are the corresponding magnetic quan-
tum numbers and p denotes the laser polarization. Equation (3.10) is adapted
from Ref. [Gra07]. The 3J-symbol is only non zero when the relation

mi + p = mj (3.11)

is fulfilled. For linear π and circular σ± polarized light p is equal to 0 and
±1, respectively. The relation indicates that for linear polarized light, e. g. , a
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3 OPTICAL DIPOLE TRAP

ground state in the stretched state mi = −Ji will not couple to an excited
state with Jj = Ji − 1, since in this case the magnetic quantum numbers
mi and mj cannot be equal. For different laser polarization different excited
states contribute to the ac-Stark shift. The line strength factors are included
by defining a new variable Γ̃j

Γ̃j = c2
ijΓj = (2Jj + 1)

(
Ji 1 Jj
mi p −mj

)2

Γj, (3.12)

where Γj is the spontaneous decay rate of the corresponding excited state |ej〉.
The overall energy shift of a state |gi〉 is given by the sum over the contri-

butions of each coupled excited state |ej〉 according to the detuning (ω− ωij),
the spontaneous decay rate Γj and the line strength factors c2

ij. This leads to
the following generalization of Eqs. (3.5) and (3.6):

Udip(~r) = −
∑
j

3πc2

2ω3
ij

(
Γ̃j

ωij − ω
+

Γ̃j
ωij + ω

)
I(~r), (3.13)

Γsc(~r) =
∑
j

3πc2

2~ω3
ij

(
ω

ωij

)3
(

Γ̃j
ωij − ω

+
Γ̃j

ωij + ω

)2

I(~r). (3.14)

To calculate the trapping potential and the scattering rate the intensity
distribution of the electric field has to be known. The simplest realization of
an optical dipole trap is to focus a single red-detuned laser beam onto the
atoms. In Gaussian optics [Sal91], the intensity of a laser beam propagating
along the z-axis with radial symmetry r is described by

I(r, z) =
2P

πw2(z)
exp

(
−2

r2

w2(z)

)
(3.15)

with P being the total power3. w(z) is the 1/e2 beam radius4 and it is defined
by the minimal beam waist w0, the axial coordinate z, and the Rayleigh range
zR:

w(z) = w0

√
1 +

z2

z2
R

. (3.16)

3P can be calculated by integrating the intensity I(r) over the whole area in polar
coordinates.

4This means that within a circle of radius r = w(z) approximately 86% of the power is
contained.
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3.2. The case of erbium

The Rayleigh range zR = πw2
0/λ describes the distance over which the waist of

the beam has increased to
√

2w0. Equation (3.15) indicates that the intensity
is the highest in the focal point at the center of the beam.

I0 = I(0, 0) =
2P

πw2
0

(3.17)

This peak intensity I0 and the polarizability Ũ define the total trap depth

Û = −
∑
j

3πc2

2ω3
ij

(
Γ̃j

ωij − ω
+

Γ̃j
ωij + ω

)
I(0, 0) = ŨI0. (3.18)

For convenience we express the polarizability in units of 2ε0c
5. In literature it

is often distinguished between the scalar and the tensorial part of the polariz-
ability. The formula given in this thesis includes already both, the scalar and
the tensorial part.

3.2 The case of erbium
As discussed previously, the total trapping potential is determined by the con-
tribution of every dipole allowed transition according to the detunings ∆ij,
the spontaneous decay rates Γj and the line strength factors c2

ij. In the case of
erbium the calculation of the polarizability is difficult, since this rare-earth ele-
ment has such a complicated level structure; see Sec. 2.2. To provide a complete
set of excited states and their corresponding linewidths precise spectroscopy
and complex calculations are necessary. Up-to-date still many lines in erbium
are not known.

Due to new data from J.-F. Wyart and the group of O.Dulieu [Law10,
Wya12], we can calculate the polarizability for the ground state of erbium
atoms, as well as for the 583-nm and 401-nm state. For these calculations we
use linear polarized light at 1064 nm and assume that the atomic sample is
prepared in the stretched state mi = −Ji:

Ũ|g〉 = −4.9384 · 10−37 Jm2/W,

Ũ583 = −9.0164 · 10−39 Jm2/W,

Ũ401 = −1.3633 · 10−38 Jm2/W.

5According to Eq. (3.2) Ũ is correlated to the complex polarizability α with Ũ =
1

2ε0c
Re(α).
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3 OPTICAL DIPOLE TRAP

In atomic units the atomic polarizabilities are Re(α|g〉) = 159.01 a.u., Re(α583) =
2.90 a.u. and Re(α401) = 4.39 a.u. The resulting potential depths for a Gaussian
laser beam with a 30µm waist and a power of 10W are:

Û|g〉 = −253.01µK,

Û583 = −4.62µK,

Û401 = −6.98µK.

In Chap. 4 we will focus deeply on the calculation of the polarizability and will
also discuss the influence of trapping laser light with a different wavelength.

3.3 Modeling of the trapping potential
On the route to quantum degeneracy, the design of an optimal dipole trap
plays a crucial role. The most important parameters of an optical trap are the
trap depths and the trap frequencies, which give insight on the confinement in
each spatial direction. The confinement can be manipulated by changing the
power, the waist or the propagation direction of the laser beams. For a single,
circular beam the calculation of the relevant parameters is straightforward.
But a single beam cannot create a strong confinement in the axial direction.
In our experiment we cross two elliptic beams within a specific angle to create
the dipole trap. The angle is not avoidable, because the optical access to the
chamber is limited. The ellipticity of the horizontal laser beam is tunable as
will be shown in Sec. 5.1.

A major part of my thesis work was about setting up a calculation6 to
design the optimal trapping potential for our experiment. This model can also
be adapted to any other atomic element and calculates trapping parameters
for arbitrary crossed elliptic beams.

In this Section, we will follow a step-by-step mathematical approach to
model optical dipole traps and derive relevant parameters. We will start by
considering a single circular laser beam. We will then allow the beam to be
elliptic. Further we will consider the case of two beams crossing at an angle of
90◦. Then we will describe the trapping geometry for a crossed beam dipole trap
intersecting at an arbitrary angle. Finally we will take gravity into account,
which plays an important role for shallow trapping potentials.

In a last step, we will use this model to simulate the trapping potential of
the used dipole trap in our experiment.

6The source code of this file can be found in Appendix B (Program version: Wolfram
Mathematica 8.0)
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3.3. Modeling of the trapping potential

Single circular beam

The trapping potential of a dipole trap was already discussed in Sec. 3.1.2. It
is defined as:

Udip = ŨI(~r),

where Ũ is the atomic polarizability and I(~r) is the laser intensity. For a circular
Gaussian beam it has the following form:

I(r, z) =
2P

πw2(z)
exp

(
−2

r2

w2(z)

)
. (3.19)

For small atomic clouds compared to the size of the laser beam it is possible
to use a harmonic approximation to extract the trap frequencies. This is a
reasonable assumption, since atoms populate only the center of the trap. The
harmonic approximation gives for the potential of a single circular beam:

Ucircular ≈
1

2

∂2Udip
∂r2

(0)r2 +
1

2

∂2Udip
∂z2

(0)z2 = Û

(
1− 2

r2

w2
0

− z2

z2
R

)
. (3.20)

Here w0 represents the minimal beam waist at the focal point, zR is the
Rayleigh range and Û = ŨI(0) is the total trap depth. By comparing Eq. (3.20)
to the classical harmonic potential 1

2
m(ω2

rr
2 +ω2

zz
2) one finds for the trap fre-

quencies in radial and axial direction:

ωr ≡

√
4Û

mw2
0

, ωz ≡

√
2Û

mz2
R

. (3.21)

The axial confinement is much weaker than the radial confinement, because
zR is much larger than w0 and the axial trap frequency is smaller by a factor
of
√

2. Because Û is proportional to P/w2
0 and zR ∝ w2

0, the dependence of the
trap frequencies can also be written as

ωr ∝
√
P/w2

0, ωa ∝
√
P/w2

0. (3.22)

Single elliptic beam

For the description of an elliptic beam one has to switch to Cartesian coordi-
nates. The axes definition are the same as for the horizontal beam in Fig. 3.2.
As already seen in Eq. (3.19) the peak intensity is in principle nothing else
than the total power divided by the area of the beam. For an elliptic beam the
waists in the radial directions x and y are different and defined as horizontal
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3 OPTICAL DIPOLE TRAP

waist wx(z) and vertical waist wy(z). Therefore, the total cross section of the
laser beam changes, and leads to the following intensity profile:

I(x, y, z) =
2P

πwx(z)wy(z)
exp

[
−2

(
x2

w2
x(z)

+
y2

w2
y(z)

)]
. (3.23)

The harmonic approximation of the trapping potential gives

Uelliptic ≈ Û

[
1− 2x2

w2
x

− 2y2

w2
y

− 1

2
z2

(
1

z2
Rx

+
1

z2
Ry

)]
, (3.24)

where wx and wy are the minimal beam waists along the radial directions x
and y. zRx and zRy are the corresponding Rayleigh ranges along the axial z
direction and

Û = Ũ
2P

πwxwy

is the total trap depth. For convenience we define a new Rayleigh range zRell :

zRell =
zRxzRy√

1
2
(z2
Rx

+ z2
Ry

)
. (3.25)

Finally, the trap frequencies for a single elliptic beam read as

ωx ≡

√
4Û

mw2
x

, ωy ≡

√
4Û

mw2
y

, ωz ≡

√
2Û

mz2
Rell

. (3.26)

Crossed beams at 90◦

The crossing of two beams in principle only adds another dipole trap potential
to the system. Here we define the propagation direction of the second beam
along the y-axis (axis of gravity), which is shown schematically in Fig. 3.2.
The first beam is defined as horizontal beam and the second beam as vertical
beam. The new trapping potential of the vertical beam is added to the trapping
potential of the horizontal beam and leads to the following total potential:

Ucrossed ≈ Û1

[
1− 2x2

w2
1x

− 2y2

w2
1y

− 1

2

z2

zR1,ell

)

]
−

− Û2

[
1− 2x2

w2
2x

− 2z2

w2
2z

− 1

2

y2

zR2,ell

)

]
. (3.27)

The definition w1i (w2i) indicates the quantity for the minimal beam waist
along the axis i = x, y, z of the horizontal (vertical) beam. zR1,ell

and zR2,ell
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3.3. Modeling of the trapping potential

horizontal beam 

vertical beam y 
x 

z 

Figure 3.2: Schematic of two dipole trap beams crossed at an angle of 90◦.
The horizontal beam propagates along the z-axis and the vertical beam along
the y-axis.

are the corresponding Rayleigh ranges of the horizontal and the vertical beam,
respectively. Û1 and Û2 are the total trap depths for these beams. The harmonic
approximation gives the following trap frequencies:

ωx,crossed ≡

√√√√ 4

m

(
Û1

w2
1x

+
Û2

w2
2x

)
,

ωy,crossed ≡

√√√√ 1

m

(
4Û1

w2
1y

+
2Û2

z2
R2,ell

)
, (3.28)

ωz,crossed ≡

√√√√ 1

m

(
4Û2

w2
2z

+
2Û1

z2
R1,ell

)
.

These equations point out two things:
• In the case of similar beam waists and powers of the two laser beams the

confinement in the x-direction is the highest, because the radial confine-
ment of each beam is added up.

• The confinement in the axial direction of one beam is mainly given by
the second beam.

In the experiment the weakest confining axis plays the most significant role,
because atoms can be lost in this direction. Therefore, the effective potential
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3 OPTICAL DIPOLE TRAP

depth is always determined by the axis with the smallest trap frequency.

Crossed beams at an angle

When the vertical beam is rotated, the confinement is also changed. The rota-
tion can be described by two angles α and β. Their definition is given in Fig. 3.3.
When both angles are 0◦ this model matches the discussion for crossed beams
at 90◦.

Tilting one beam does not change the total trap depth, but the influence of
the beam waists and the Rayleigh range on each axis on the trap frequencies is
different. To investigate this change we describe the trap geometry created by
the beam propagating along the y-axis as an ellipse x2

a2
+ y2

b2
= 1 with boundaries

a = w2z and b = zR2,ell
. When this ellipse is rotated to the used coordinate

system at an angle α, the new boundaries w̃0 and z̃R on the x-, and y-axis
have the following form:

w̃2z(α) =

√√√√ 1
cos2(α)

w2
2z

+ sin2(α)

2z2R2,ell

,

z̃R2,ell
(α) =

√√√√ 1
sin2(α)

w2
2z

+ cos2(α)

2z2R2,ell

. (3.29)

The factor 2 at zR2,ell
includes that the confinement in the axial direction is

weaker than the radial confinement, which was already mentioned in Eq. (3.21).
Figure 3.3(a) shows the tilt of the vertical beam to the axis of gravity, i.e. y-
z-plane, and Fig. 3.3(b) indicates the rotation of the vertical beam in the
plane perpendicular to the axis of gravity, i.e.x-z-plane. The calculation of
the adapted boundaries for the angle β is done analogously. The only differ-
ence is that for this angle w2x and w2z have to be adapted. Note that for
the calculation for angle β the new boundary from the calculation with an-
gle α, hence w̃2z(α), has to be taken into account. As a consequence the trap
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3.3. Modeling of the trapping potential

Figure 3.3: Definition of the angles embedded between the two beams. The
horizontal beam (beam 1) propagates along the z-axis. The vertical beam
(beam 2) in principle propagates along the y-axis. α defines the angle of the
vertical beam to the axis of gravity in the plane spanned by the propagation
direction of the horizontal beam and the direction of gravity. If α would be
90◦ the vertical beam would overlap with the horizontal beam. β defines the
rotation of the vertical to the horizontal beam in the plane perpendicular to
the axis of gravity. The change of the effective waists and the Rayleigh range
of the vertical beam in the x-, y- and z-axis due to these two angles cannot be
calculated independently.

frequencies transform to:

ωxαβ ≡

√√√√ 4

m

(
Û1

w2
1x

+
Û2

w̃2
2x(α, β)

)
,

ωyαβ ≡

√√√√ 4

m

(
Û1

w2
1y

+
Û2

z̃2
R2,ell

(α)

)
, (3.30)

ωzαβ ≡

√√√√ 1

m

(
4Û2

w̃2
2z(α, β)

+
2Û1

z2
R1,ell

)
.

How the beam waists and the Rayleigh range of the tilted vertical beam are
actually calculated can be found in Appendix B.
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Figure 3.4: Influence of gravity on the trapping potential for different powers
of the trapping laser beam along the plane x = z = 0. For this simulation we
use a single circular beam with a waist w0 of 30µm and a power P of (a) 10W
and (b) 0.3W. The trap depths correspond to the polarizability of bosonic
erbium atoms. This simulation shows that the effect of gravity only becomes
crucial for shallow trapping potentials.

Gravity

For low trap depths the gravitational force (Fgrav = mg) can push the atoms
out of the trap. m is the mass of the atom and g is the gravitational accelera-
tion. It is important to know at which confinement this effect becomes relevant.
Only the trap frequency ωy has to be adapted.

Adding the gravitational potential (Ugrav = mgy) to the dipole potential
(Udip) makes the effect visible. In Fig. 3.4 the tilt of the potential is shown for
two different trapping configuration of a single beam. Figure (a) is for a 10W
circular laser beam with a waist w0 of 30µm and Fig. (b) shows the same beam
for a power of 0.3W. The shown trap depths are calculated for erbium atoms.
The change of the trap frequency along the axis of gravity is described by the
following equation:

ωyαβ, gravity ≡

√√√√ 4

m

(
Û1, gravity

w2
1y

+
Û2, gravity

z̃2
R2,ell

(α)

)
, (3.31)

where Û1, gravity (Û2, gravity) describes the reduced effective trap depth of the
horizontal (vertical) dipole trap beam due to the gravitational potential. The
reduced trap depths are found numerically. Therefore, we compare the total
trap depth with the maximum value of the combined potential in the direction
of gravity. If the trapping potential is less steep than the potential of gravity,
all atoms are lost out of the trap.
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3.3. Modeling of the trapping potential

Figure 3.5: Scheme of the cooling and trapping setup in our experiment. For
the Zeeman slower we use the strong 401-nm transition. The MOT operates on
the narrow 583-nm transition. For the dipole trap we use 1064-nm laser light
in a crossed configuration.

Real trap

In our experiment we use two crossed laser beams to create an optical dipole
trap. The vertical beam has an angle of α = 15◦ as defined in Fig. 3.3. This
angle is because of the limited space around the viewport, which is used for
the vertical beam due to the MOT operation. Additionally the vertical beam
is rotated by the angle β = 14◦ in the plane perpendicular to the axis of
gravity. This angle is because of the angle of the viewport, which is used for
the horizontal dipole trap beam. The scheme of our cooling and trapping setup
can be found in Fig. 3.5. The experimental implementation of the dipole trap
beams will be discussed in detail in Sec. 5.1.3.

Figure 3.6 shows a simulation of the real trapping potential in our experi-
ment. For this simulation we use a power of 1W for the horizontal beam, and
a power of 10W for the vertical beam. The waists of the beams are specified
in the caption of Fig. 3.6.
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Chapter 4

Atomic polarizability of erbium

In this Chapter, we focus on the atomic polarizability of bosonic erbium atoms.
For the bosonic isotopes the nuclear quantum number is zero and, therefore, no
hyperfine splitting is observed. We briefly introduce the up-to-date knowledge
of the energy level structure of erbium. Further, we give an estimate for the
depth of the dipole trap potential for the ground state of erbium atoms. Ad-
ditionally, we discuss the polarizability of the narrow-line transition at 583 nm
and the strong 401-nm transition, which we use for the operation of the MOT
and the Zeeman slower, respectively. We show the dependence of the trapping
potential on the laser frequency ω and how the scattering rate depends on
ω. Finally, we calculate the relevant parameters of an optical dipole trap for
erbium atoms for a selection of technically feasible laser wavelengths.

4.1 Contribution of different energy levels
Erbium has a very rich energy spectrum; see Sec. 2.2. The electronic ground
state of erbium is in a [Xe]4f 126s2(3H6) configuration. This state has a total
angular momentum quantum number J of 6 and an even parity. From the NIST
Atomic Spectra Database [Ral11] there are 672 excited states known with J
values ranging from 1 to 12. The energy of the excited states in relation to
the ground state ranges from 5035 to 46971 cm−1. From these levels only 144
can couple to the ground state via optical dipole transition; see Sec. 3.1.2. In
the case of erbium electrons can only be excited to levels with odd parity and
J values ranging from 5 to 7. These dipole allowed transitions are shown in
Fig. 4.1.

We have an intense collaboration with J.-F.Wyart and the group of O.Dulieu
at the Laboratoire Aimé Cotton in Orsay, France, which have derived transi-
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Figure 4.1: Energy of all levels which can couple to the ground state
4f126s2(3H6) due to the selection rules for electric dipole interaction. The
shown energy spectrum is incomplete, since to date not all energy levels in
erbium are known. The red arrow shows the energy of the used dipole trap
laser. For a low scattering rate of dipole trap photons it is important, that
the detuning to the excited states is large. In particular, the detuning to the
strongest transition should be as large as possible. In our experiment a 1064-
nm laser source was chosen for the creation of the dipole trap. The data were
taken from [Ral11].

tion probabilities for many levels of erbium [Law10]. The data are the result
of combined spectroscopic measurements and calculations. Experimental data
are derived by combining branching fractions measured with a Fourier trans-
form spectrometer with radiative lifetimes from time-resolved-laser-induced-
fluorescence measurements. The calculations use parametric fits based on the
Cowan code [Cow81] and can also predict unobserved levels. The calculations
are than rescaled by using the observed levels as a reference value. The theoret-
ical energies can be extracted from fitted parameters. Those values minimize
the root mean square of the difference between the experimentally observed
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Figure 4.2: Natural linewidth ∆ν401 of the strong 401-nm level. The quantity
∆ν401 = 29.74(2) MHz was measured in our experiment by using an absorption
imaging technique. The atom number was measure versus the detuning of the
imaging light for three different isotopes (166Er, 168Er, 170Er). The data were
fitted by a Lorentzian function and the arithmetic mean of the linewidths is
taken to extract the actual linewidth. The temperature for the measurements
was in the range between 11 and 15 µK.

and the theoretically calculated energies of the excited states. This is done for
all considered experimental energies.

Newest calculations predict 1176 excited levels that can couple to the
ground state [Wya12]. This new data set provides indeed more transitions,
however, compared to [Ral11] there are also levels missing1. The new set of
data also includes the experimental values for the linewidths ∆ν = Γ/2π of
the 401-, and the 583-nm state. Because of the complexity of the atomic spec-
trum, the knowledge of the transition linewidths is not very precise. For in-
stance, even one of the strongest erbium transitions, located at 401 nm, was
overestimated by 20%. The group of McClelland et al. [McC06a] has measured
a linewidth of Γ401/2π = 35.6 MHz. This measurement was done via fluores-
cence spectroscopy on atomic beams. Lawler et al. [Law10] found a value of
Γ401/2π = 29.5 MHz from lifetime measurements. We measure a linewidth of
29.74(2) MHz by using an absorption imaging technique on magneto-optically
trapped atoms; see Fig. 4.2. This little historical excursus shows exemplary
how difficult it is to determine all the levels in erbium and their corresponding
linewidths precisely. The linewidth of the 583-nm state is Γ583/2π = 190 kHz.

1In the new set of data transitions with linewidths below 100 Hz are excluded, which
explains the missing levels.
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Figure 4.3: Natural linewidth ∆ν of all relevant excited states versus the
corresponding energy difference between the ground state |g〉 and each excited
state |e〉 [Wya12].

Figure 4.3 shows the energies of the 1176 states plotted to their correspond-
ing natural linewidths ∆ν. The strong 401-nm transition has the broadest
linewidth. The detuning of the laser trapping light is always given with re-
spect to this level because it is the strongest transition in erbium. Dipole traps
with lower (higher) laser energies relative to this level are called red-detuned
(blue-detuned) traps. Most of the excited levels in erbium are located in the
high energy2 region below 300 nm. From these data one can already realize that
a laser emitting at a wavelength above 900 nm will give a low scattering rate,
because the detuning to most of the levels is large. A more detailed discussion
on the dependence of the dipole force on the used laser wavelength is given in
Sec. 4.2.

As previously discussed, all the dipole allowed transitions contribute to the
overall trapping potential according to their line strength factors. However,
the polarizability strongly depends on the linewidth ∆ν, making the weight
of narrow transitions less an less important; see discussion below. Based on
the new data set, we derive the atomic polarizability following Eq. (3.18). For
linear polarized laser light at 1064 nm, we find

Ũ|g〉 = −4.9384 · 10−37 Jm2/W.

2The energy E is correlated to the wavelength λ with E = ~c
λ .
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4.1. Contribution of different energy levels

In atomic units3 this value converts to:

Re(α|g〉) = 159.01 a.u.

The derived value already takes the scalar and tensorial part of the polariz-
ability into account. For the ground state of erbium atoms the tensorial part
does not have a big influence on the polarizability. We can now calculate the
resulting dipole potential and potential depth. For a Gaussian laser beam of
30µm waist and a power of 10W, we find a potential depth for atoms in the
ground state of

Û|g〉 = −253.01µK4.

Figure 4.4 shows the contribution of all dipole allowed transitions to the overall
trapping potential of the ground state. In Sec.6.1.2 we use trap frequency
measurements to extract the dynamic polarizability of erbium experimentally
and compare it to the derived theoretical value.

There are 4 (34) excited states with a natural linewidth ∆ν > 10 (1)MHz.
The coupling to these states already gives a contribution to the trap depth of
62.7 (84.1)%. The contribution of the strongest line (401-nm) is 11.1%. This
shows that mainly the strong lines contribute to the dipole trap potential.

For a deeper understanding of the trapping behavior of erbium atoms, it is
necessary to know the polarizability of specific excited states. From particular
interest are the 583-nm and the 401-nm state. These are the transitions at
which the MOT and the Zeeman slower are operated and hence atoms can
populate these levels. For these calculations the excited state is treated as a
ground state, where all allowed transitions of this state can contribute to the
energy shift. Energy levels located below this excited state will increase the
energy, while energy levels located above this state will decrease the energy.

Fig. 4.5 shows the resulting shift of the 583-nm state due to the laser light.
The shift of the 401-nm state is shown in Fig. 4.6. The dynamic polarizabilities
for a linear polarized 1064-nm laser light are found to be:

Ũ583 = −9.0164 · 10−39 Jm2/W,

Ũ401 = −1.3633 · 10−38 Jm2/W.

In atomic units this corresponds to

Re(α583) = 2.90 a.u.,

3The conversion factor to atomic units is Re(α) = −Ũ2ε0c ·/(1.6488 ·10−41); see Eq. (3.2)
and [Sch06].

4To convert the dipole potential to the temperature scale, one has to divide the effective
potential depth by the Boltzmann constant kB .
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Figure 4.4: Dipole trap depth for a spherical 1064 nm laser beam with waist
w = 30µm and power P = 10W for the ground state of erbium atoms. The blue
curves are the contribution to the trap depth of each dipole allowed transition,
which is related to their linewidths and line strength factors. The purple curve
is the total trapping potential.

Re(α401) = 4.39 a.u..

For the modeled laser beam the polarizabilities correspond to total trap depths
of

Û583 = −4.62µK,

Û401 = −6.98µK.

Unfortunately for these states only eight and three transitions are known,
respectively [Law10]. Therefore, the calculated polarizabilities might not be
correct. For the excited states it is expected that the tensorial part of the
polarizabilities plays a more significant role. The scalar part only depends on
the intensity of the electric field, whereas the tensorial part also depends on
the direction of the electric field compared to the direction of the quantization
axis of the atoms [Ang68]. The influence of the tensorial part on the total
polarizability can be huge, as shown recently for 40K87Rb molecules [Ney12].
To determine a complete set of dipole allowed transitions of the discussed
excited states will be part of future theoretical investigations.
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4.2. Dependence on the laser wavelength
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Figure 4.5: Dipole trap depth for a spherical 1064 nm laser with waist w =
30µm and power P = 10W for the 583-nm state of erbium atoms. The blue
curves are the contribution to the trap depth of each dipole allowed transition
to the 583-nm state. The purple curve is the total trapping potential.
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Figure 4.6: Dipole trap depth for a spherical 1064 nm laser with waist w =
30µm and power P = 10W for the 401-nm state of erbium atoms. The blue
curves are the contribution to the trap depth of each dipole allowed transition
to the 401-nm state. The purple curve is the total trapping potential.

4.2 Dependence on the laser wavelength

To calculate the dependence of the total trap depth Ûdip on the used laser wave-
length λlaser we use Eq. (3.13) and change λlaser = 2πc

ω
from 200 to 1100 nm.

The result is shown in Fig. 4.7. In the red-detuned region (700-1100 nm) the
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Figure 4.7: Dependence of the total trapdepth Ûdip on the used laser fre-
quency λlaser ranging from 200 to 1100 nm. For this calculation the model of
a single beam ODT with 30µm waist and 10W is used. This example gives
an estimate about the created trap depth in µK. The vertical lines show the
asymptotic behavior of Ûdip when the wavelength is resonant to an atomic
transition.

total trap depth increases for smaller detunings as expected from Eq. (3.18).
Every time the wavelength coincides with one of the levels in erbium the con-
tribution of this level to the total trap depth approaches infinity. This leads to
an asymptotic behavior when the energy of the laser is close to an excited state.
For wavelengths between 200-700 nm the behavior of the total trap depth gets
more complicated. In this region the laser is to some lines red-detuned and
to the other lines blue-detuned, leading to a deepening or steepening of the
trapping potential. Below the strong 401-nm line the trap depth is positive,
leading to the repulsive trapping behavior, as discussed in Sec. 3.1.

Furthermore, we simulate the dependence of the scattering rate Γsc on the
laser wavelength using Eq. (3.14). Figure 4.8 shows the strong 1/∆2 correlation
of the scattering rate on the detuning. In the region close to the 401-nm line
the scattering rate gets extremely large, making it impossible to trap atoms
by means of optical dipole traps.

For experimental reasons the heating rate of the laser, which stems from
the scattering of photons generating the dipole trap, is from interest. In the
far-detuned case this scattering is an elastic process. Therefore, the energy
transfer is determined only by the energy ~klaser of the scattered photon, which
is related to the wavelength of the laser. The overall heating increases the total
thermal energy by 2Erec per scattering event, where Erec = (~klaser)2/2m is the
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Figure 4.8: Dependence of the scattering rate Γsc on the used laser wavelength
λlaser ranging from 400 to 1100 nm. For this calculation the model of a single
beam ODT with 30µm waist and 10W is used. The smaller the detuning to
the main transition (401-nm line) is, the larger becomes the scattering rate. For
wavelengths below this line (blue detuning) the scattering rate is not relevant.
In this blue-detuned case atoms are pushed out of the laser beam, as discussed
in Sec. 3.1. Therefore, scattering processes hardly occur.

recoil energy and is related to the recoil temperature by Trec = 2Erec/kB. For
a red-detuned 3D harmonic trap the heating rate can be expressed as [Gri00]:

Ṫred =
1

3
TrecΓsc. (4.1)

In the blue-detuned case atoms are located in the intensity minimum and the
potential depth is determined by the height of the surrounding walls. Such a
confinement can be created for example by a blue-detuned optical lattice. The
heating rate Ṫblue is given by [Gri00]

Ṫblue =
3

2

kBT

Û
Ṫred, (4.2)

where Û is the total trap depth and T is the temperature of the trapped atomic
sample. In Tab. 4.1 we simulate different dipole trap parameters for a single
spherical beam with 30µm waist, 10W power, and an atom cloud temperature
of 1µK for different laser wavelengths. The considered wavelengths are not
resonant with one of the excited states in erbium and are technically feasible.
For each laser wavelength we calculate the recoil temperature, the dynamic
polarizability, the effective potential depth, the scattering rate and the heating
rate for the red- and the blue-detuned case.
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Chapter 5

Setup of a flexible optical dipole
trap for erbium

In the previous chapters we reported on the polarizability of erbium atoms.
From this knowledge we can estimate the trap depth and trap frequencies for
various geometries of a dipole trap. Based on this knowledge, we are now able
to design an optimal dipole trap for erbium.

The main challenge is to find a configuration able to assure both, an optimal
loading of atoms from the MOT to the dipole trap and a high efficiency during
the evaporative cooling. To match these requirements, we have chosen to build
an optical dipole trap based on a time averaged potential. With this technique
we can dynamically change the effective beam waist of the trapping beam
and thus realize a tunable and flexible confinement. In addition, a number
of interesting effects in the quantum regime are expected to strongly depend
on the trap geometry and on the trap aspect ratio AR. These effects include,
for instance, the roton instability [San03, Bla12] and the quantum-fluctuation-
driven expansion [Lim11]. With our tunable dipole trap, we can have access
to these interesting phenomena.

The total number of atoms, which can be loaded from the magneto-optical-
trap (MOT) to the dipole trap, is significantly determined by the spatial over-
lap of these two traps. Based on mode-matching arguments, the larger the
overlap is, the more atoms will be loaded to the dipole trap. For this process
a large beam size of the trapping laser beam is needed.

After atoms are loaded to the dipole trap, forced evaporation begins. The
trap depth is lowered by decreasing the intensity of the dipole trap beam. Thus,
the hottest atoms are lost out of the trap and the remaining atoms thermalize
to a lower final temperature via elastic collisions. For this process the collisional
rate between atoms is crucial. This rate is in principal determined by three
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5 SETUP OF A FLEXIBLE OPTICAL DIPOLE TRAP FOR ERBIUM

parameters. One parameter is the scattering length a, which is an intrinsic
property of an atomic isotope. Further, the mean relative velocity of the atoms
changes the collisional rate. Finally, the density determines how often atoms
collide per time. The density can be tuned by changing the geometry of the
trap. This gives a versatile tool to adjust the collisional rate, thus leading to
efficient evaporative cooling. By changing the shape of the trapping potential
we can address both conditions, a large overlap of the MOT and the dipole
trap and a tunable density. This leads to an increased controllability of the
atoms.

To realize this tunable dipole trap we build a scanning system, which allows
to change the waist of one dipole trap beam in one axis. The idea of this
scanning system was already realized in different teams of our group [Sch07,
Koh07].

5.1 Scanning system
For the scanning system we use an acousto-optic-modulator (AOM)1. The
AOM consists of a crystal and diffracts a laser beam using sound waves. The
frequency of the sound waves fAOM defines the angle of deflection. When a lens
is positioned after the AOM in the distance of the focal length, the diffraction
is translated to a parallel displacement of the beam. This is only true when the
beam is passing the AOM collimated. fAOM can be varied within the bandwidth
BWAOM of the AOM, leading to a different displacement of the beam. When
fAOM is tuned fast enough, compared to the trap frequencies, the scan of the
beam leads to a time-averaged potential for the atoms. Figure 5.1 shows the
schematic of the scanning system.

5.1.1 Requirements on the scanning system

From previous measurements at our experiment we know that a beam waist of
about 30µm leads to efficient evaporative cooling of the 168Er isotope [Aik12].
The loading efficiency at this beam waist from the MOT to the dipole trap is
about 2 %.

With the new dipole trap we aim to increase the loading efficiency. Here
we consider a single beam configuration for the dipole trap. We use an elliptic
beam with waist in horizontal direction x of around 25µm and waist in vertical

1We use the model 3110-197 from Crystal Technology, Inc, which has a center frequency
fcenter of 110MHz and a bandwidth BWAOM of ±15MHz. The numerical aperture of this
model is 3mm.
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5.1. Scanning system

direction y of around 15µm. The waist in horizontal direction can be increased
by the scanning system. The ellipticity of the beam is defined as aspect ratio

AR =
wx
wy

=
ωy
ωx
, (5.1)

where wx and wy are the horizontal and vertical beam waists2, respectively.
The quantities ωx and ωy are the corresponding trap frequencies along the
horizontal and vertical direction, as defined by Eq. (3.26).

The AR will then be changed by our scanning system. The maximal pos-
sible AR is limited by the resolution R = D

wa
of the AOM. D is the distance

by which the center of the beam can be deflected within the bandwidth of the
AOM and wa is defined as the beam waist after the lense; see Fig. 5.1. The
resolution only depends on the initial waist wi of the beam in the AOM and
on intrinsic properties of the AOM [Koh07]:

R =
2π

4cs
wiBWAOM . (5.2)

For our AOM the speed of sound cs is 4200m/s and BWAOM is 30MHz. The
resolution does not depend on the focal length of the used lens and cannot be
changed by implementing a telescope after the AOM. The largest beam waist
wi, which can pass through the AOM is limited by the numerical aperture of
the AOM and is about 700µm. This configuration would give a resolution R
of about 8. With this resolution the horizontal waist wx at the chamber could
be tuned from 253 to 200µm, leading to aspect ratios in the range of 1.5 to 13.

An important requirement on the scanning system is the modulation fre-
quency ωmod. This frequency defines how fast the frequency of the AOM fAOM
is tuned. Only if the modulation is fast enough, atoms will not follow the
change of the potential. This so called time-averaged potential is typically cre-
ated for modulation frequencies ωmod 100 times larger than the trap frequency
ωx. In this case no heating of the atomic cloud is expected.

5.1.2 Technical realization

To realize the required scanning system the driver of the AOM is adapted.
The scheme of the electronic setup is shown in Fig. 5.2. For the creation of an
elliptic Gaussian beam we control the frequency of the AOM as follows:

2In the following discussion wx (wy) is always used for the horizontal (vertical) beam
waist at the focal point in the chamber, at the position where atoms are trapped.

3The lenses used to achieve this beam waist are shown in Fig. 5.3.
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wa
wi

f f

D

Figure 5.1: Shown is the basic principle of the scanning system. An AOM
diffracts a collimated beam depending on the frequency of sound waves fAOM
in the AOM. fAOM can be tuned around the center frequency fcenter and
within the bandwidth BWAOM of the AOM. A lense having a distance of its
focal length f to the AOM translates the deflection to a parallel displacement
of the beam. The bright and the flat beams show exemplary the diffraction for
different frequencies of the sound waves. A fast sweep over different frequencies
leads to an elliptic beam. The ellipticity depends on the range of the sweep.

• The angle of deflection is determined by the frequency of sound waves
fAOM in the AOM. This frequency is given by a voltage controlled os-
cillator (VCO). Depending on the input voltage of the VCO the output
frequency can be changed.

• The voltage Umod, which controls the VCO, is created by a mixer4. Umod
is determined by three different parameters:

Umod = Uoffset +
Usignal Ugain

10 V
. (5.3)

• Uoffset is used to adjust the central working frequency of the VCO to the
center frequency fcenter = 110MHz of the AOM. The used VCO has a
working range of 75-150MHz. 110MHz correspond to an input voltage of
7.6V. With this voltage one can also displace the atom cloud dynamically
for, e.g., trap frequency measurements.

• Usignal is created by an external frequency generator. This signal defines
the shape of the modulation signal Umod and, therefore, determines the
shape of the scanned beam. In previous experiments an arcus-cosine-
function5 has proved to be suited for the creation of a Gaussian shape

4We used the model AD 734 from Analog Devices; see Appendix A.
5As frequency generator we use the model Agilent 33522A. We create the desired function

with Mathematica, scale it to a 16 bit amplitude resolution and write the values in a text
file. This file is loaded to the Agilent via a USB-stick. The Agilent 33522A has a maximum
sampling rate of 250MSa/s. The number of samples written to the text file determines the
maximum frequency. In our case we choose 252 samples and obtain a maximum frequency
of ωmaxmod = 2π · 0.992MHz.
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5.1. Scanning system

Figure 5.2: Scheme of the electronic setup of the scanning system. To control
the deflection and the power of the dipole trap beam, we use the AOM-driver.
The signal Umod, which determines the potential form of the dipole trap is
created by a mixer. This signal is sent to the frequency input of the AOM-
driver and controls the radio frequency fAOM created by a voltage controlled
oscillator. The deflection of the beam depends on this radio frequency. The
power of the beam is controlled by a PID controller, which compares the set
voltage Uset with the actual voltage UPD monitored with a photo diode. Ucontrol
regulates the power of the AOM.

[Koh07]. The voltage of this signal is set to 10 Vpp. By using a differ-
ent function one can create an arbitrary trapping geometry, e.g. a box-
potential or a double-well-potential.

• Ugain defines the amplitude of Umod. This parameter gives the knob to
tune the AR of the trap during the experimental cycle online. A voltage
of 1V corresponds to a sweep of 6MHz.

The power of the dipole trap beam is monitored by a photodiode and
compared to the set value Uset by a PID-controller. The set value is given via
the experiment control system. The PID-controller regulates the power of the
signal, which is sent to the AOM. Less power corresponds to a less efficient
diffraction, thus more power is lost to the 0th order of the AOM. The power of
the 1th order is adjusted until it reaches the set value. The photo diode only
monitors the fraction of the power of the beam, which is lost through a mirror.
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5 SETUP OF A FLEXIBLE OPTICAL DIPOLE TRAP FOR ERBIUM

The voltage of the photo diode UPD has to be calibrated to the actual power
of the beam in the experimental chamber.

5.1.3 Implementation in the experiment

To find the optimal configuration of lenses and beam waists to create the
required dipole trap beam we built up a test setup. A copy of the optimized
setup was then built at the experiment table.

We use a 1064-nm light with a power of 42W, generated from a single
frequency diode-pumped solid-state laser6. Figure 5.3 shows the final setup
for the horizontal dipole trap beam. We put the laser system directly on the
experiment table. The advantage is that we can avoid the use of optical fibers,
which limit the final power, while the disadvantage is that the spatial mode of
the laser light is not "cleaned" by a fiber.

To avoid back reflection into the laser from optical elements, we place
a Faraday-isolator right after the laser. The transmission was optimized to
90.2%, which is equal to 38W. The beam is diverging after the laser and can
be collimated by inserting a lens7 with a focal length of 1000mm at around
109 cm after the output of the laser.

For the designing of the setup after the AOM, we have to consider the
following technical facts:

• Due to the vacuum chamber the focal length of the last lens cannot be
smaller than f = 150mm.

• The beam at the AOM has to be collimated and as large as possible to
achieve a large aspect ratio.

• Each distance between the lenses after the AOM has to be the sum of
their own focal lengths to maintain the parallel displacement of the beam.

This leads to the setup shown in Fig. 5.3. The lenses f2 and f3 are used as a
telescope to adjust the beam size. The cylindrical lenses fcyl,1 and fcyl,2 only
change the beam size of the vertical beam axis and do not affect the waist of
the scanned axis. Since we produce an elliptic beam, the focal points of the x-
and y-axis after the last lens do not coincide. This can be adjusted by changing
the distance between the two cylindric lenses.

6 This laser is a Mephisto MOPA from InnoLight. The spatial mode of the laser light
strongly depends on the injection current of the laser amplifier. Therefore, the calibration of
the beam and its beam waist should only be done, when the laser is working on maximum
power.

7Due to the high power we use Fused Silica lenses with a coating for 1064-nm light. The
lenses are from LENS-Optics, GmbH and LASER COMPONENTS, GmbH.
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5.1. Scanning system

The optimized overall optimized efficiency through the AOM is 75%. This
relative small percentage is related to the beam size, which is too large for the
numerical aperture of the AOM8. The diffraction efficiency between the 0th

and the 1th order is 90%. Because the space after the last lense is limited, we
place a flip-mirror after the cylindrical lenses and copy the setup to measure
the beam size and the power "in the chamber". At the window of the vacuum
chamber 13% of the power is lost due to reflections. The maximum power at the
chamber is 18W. For the beam waists at the chamber we obtain wx = 24µm
and wy = 17µm, respectively.

The technical limitations of our scanning system will be discussed in the
following Section. To obtain the desired performance some of the electronic
parts had to be exchanged.

5.1.4 Technical limitations

The performance of the scanning system is determined by the following pa-
rameters:
Scanning range: The range of the scanning system sets the maximum achiev-

able aspect ratio of the scanned beam, as already discussed in Sec. 5.1.2.
The range is technically limited by BWAOM and depends thus on the
AOM performance as specified by the manufacturer.

Modulation frequency: A modulation frequency ωmod of about 100 times
ωx is needed to create a time-averaged-potential. The modulation fre-
quency is limited by the speed of the VCO that creates the radiofre-
quency signal. The used AOM-driver is designed for a usage of the POS
150 from Mini-Circuits; see Appendix A. For a scanning range of 30MHz
the 3dB-modulation bandwidth was measured to be roughly 2π·100 kHz.
For higher modulation frequencies the range of the scanned frequency
fAOM decreases. From the calculations discussed in Sec. 3.3 we expect
trap frequencies ωx of up to 2π·2 kHz, for the used laser beam; see Sec. 5.2.
Therefore, we exchange the POS 150 by the model VCO190-112T from
Varil. With this model we can achieve a modulation bandwidth of up to
1MHz. In Sec. 5.2 the performance of the new VCO will be discussed.

Shape of scanned radio frequency signal: By testing the finished elec-
tronic box we discovered, that the power shape, monitored by a spectrum
analyzer, strongly depends on Ucontrol. This voltage controls the power of

8In a further optimization step we implement a 2:1 telescope before the AOM. With the
new, smaller beam waist wi the efficiency through the AOM increases to 90%, leading to
a higher laser power at the chamber. The quantity for beam waists and power discussed in
this Chapter refer to the first setup.
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5.1. Scanning system

the radio frequency signal. For the maximum power of 2W, which cor-
responds to 33 dBm, the scanned signal had roughly the same power at
each frequency. However, for a lower Ucontrol the power distribution over
the scanned frequency range showed a strange shape. Some frequencies
maintained the set value of the power, where other frequencies had by
far a lower power. The problem could be traced to components of the
AOM-driver. To fix this problem we bridged the TTL-switch OPA693,
the preamplifier ERA4-SM and the amplifier MHW9267. This compo-
nents were replaced externally (outside the box) by coaxial components
from Mini-Circuits. As TTL-switch the model ZASWA-2-50DR is used.
For the preamplifier we use the model ZFL-500LN+ and for the amplifier
the model ZHL-1-2W is implemented. The overall gain is 34 dBm. With
the new components a sufficient shape of the power to frequency profile
in scanning mode for different Ucontrol and Ugain could be achieved. In
Fig. 5.4(a) the shape of the scanned frequency monitored by a spectrum
analyzer is shown for a selection of Ugain. This Figure also shows the
translation of the scanning range on the actual beam size; see Fig. 5.4(b)
and (c). Deeper investigation on the overall performance of the scanning
system follow in Sec. 5.2.
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Figure 5.4: Scanned radio signal that is sent to the AOM monitored by a
spectrum analyzer (a) and overall performance of the scanning system (b) and
(c) for a selection of scanning gains Ugain. For this measurement the modulation
frequency ωmod was fixed to 2π · 200 kHz. In (a) one can see the shape of the
scanned radio frequency in terms of power (dBm) for Ugain = 0V, 5V, and
10V. Due to the arcus-cosine-scanning-function the scanned range does not
have sharp edges. The scanned radio signal is translated by the AOM to the
beam size; see Figures (b) and (c). The profiles of the scanned beam fit nicely
to a Gaussian beam function. At the edges of the bandwidth BWAOM of the
AOM the diffraction efficiency decreases, what finally limits the maximum
beam size. The angle between the scanning axis and the x-axis is due to a
slight tilt of the AOM.
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5.2 Offline characterization

Beam profile measurements

For the characterization of the laser beam one of the most crucial points is
the measurement of the beam profile. This can be particularly demanding for
the small beam waists we are using for our dipole trap. We compare three
different technical applications to measure the waist of a focused beam. For all
methods the beam profile at various points along the propagation direction is
determined. From a fit with a Gaussian beam function the waist at the focal
point can be extracted:
CCD-camera9: The total beam profile can be monitored with the provided

software. A Gaussian beam function is fitted online to the beam in x-
and y-direction and the two times 1/e2-radius can be directly read by the
user. A disadvantage is, that the camera cannot be used at high power.
This can be circumvented by deflecting the high power beam with a
mirror and measuring the beam profile of the transmitted part.

Waist meter10: This model uses a scanning knife-edge technique. The beam
waist size 1/e2 is calculated by measuring the rise-time of the integrated
waveform as the knife-edge passes through the input beam. The power
is monitored by a photodetector. The minimal beam waist that can be
measured is provided to be 10µm, with a resolution of 2µm.

Knife edge: For this method one uses a calibrated micrometer-stage, where a
razor blade is mounted to cut the beam. The power of the beam is moni-
tored by a power meter. The total power of a beam can be calculated by
integrating the intensity of the beam over the whole area. By cutting the
beam, part of this area is blocked, leading to a lower value at the power
meter. From calculations using the Error-function it can be derived, that
the distance from the point where 86% of the total power passes the
knife edge to the point giving 14% of the total power corresponds to the
1/e2 beam waist. This method can also be used at high power.

To determine the most reliable method, we use a test setup to measure a beam
profile with the different applications. In Fig. 5.5 our results are summarized.
The fitted waists for the CCD-camera and the knife edge method give similar
results, while the waist meter measurement results in a smaller waist. Around
the focal point the waist meter and the knife edge method give larger numbers
by a factor of two in comparison to the fitted quantity. This indicates that

9Model BC106-VIS-CCD Camera Beam Profiler from Thorlabs. The pixel size of this
camera is 6.45µm, which allows waist measurements down to 30µm.

10Model WM100 Omega Meter from Thorlabs.
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Figure 5.5: Comparison between different methods for measurements of the
beam waist in a test setup. The beam profile is measured along its propagation
direction and fitted by a Gaussian beam function. The inset shows a zoom of
the measurement around the focal point.

these methods cannot give reliable results for small beam waists. The obtained
quantities with the CCD-camera, however, match nicely to the fitted curve.

Horizontal dipole trap

To investigate the dependence of the beam waist wx on the scanning voltage
Ugain we use the CCD-camera method. In Fig. 5.6 the measurements of the
horizontal and vertical waists are shown. The scanning voltage is varied from
1 to 5V. One can clearly see the large effect on the beam waist. The waists for
the scanned beam are fitted by a Gaussian function and not by the formula for
a Gaussian beam, due to the fact that the scanning system does not actually
enlarge the beam waist, but just shifts the beam very fast. The slope of the
scanned beam waist in axial direction is, therefore, much to steep to be fitted
with the theory of a Gaussian beam. It seems that the scanning has also an
influence on the vertical beam axis. The slight enlargement of wy is just a relict
coming from the fact that the scanning axis has a slight angle to the x-axis;
see Fig. 5.4(c). The small shift of the focal position of about 300µm can also
be related to this fact.

During the experimental cycle, Ugain is tuned to adjust the aspect ratio
of the beam, to obtain the highest phase-space density of the atomic sample.
Therefore, it is crucial to explore the performance of the scanning system. For
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Figure 5.6: Measured beam size of the horizontal dipole trap beam in horizon-
tal and vertical direction without and with scanning the beam. The scanning
voltage Ugain is tuned from 0 to 5 V with a step size of 1V. In axial direction
the scanned beam does not show a Gaussian behavior anymore. The dashed
line shows the position of the focal point of the vertical beam axis. Atoms are
sitting most likely at this position. For this set of measurements the modulation
frequency was fixed to fmod = 200 kHz.

this set of measurements we monitor the waists at the focal point of the y-
direction. Figure 5.7(a) shows the dependence of the waist in x- and y-direction
on the voltage Ugain. Again the strong increase of wx can be seen. At around
5V the curve levels out. This is due to the lower diffraction efficiency of the
AOM at the edge of its bandwidth, as discussed at Fig. 5.4.

In Fig. 5.7(b), the dependence of the scanned beam waist on the modulation
frequency fmod = ωmod/2π is shown. The maximum modulation frequency
strongly depends on the scanning voltage Ugain. The more the beam is scanned
the earlier the beam size breaks down for higher modulation frequencies. For
a scanning voltage of up to 2V the maximum modulation frequency ωmaxmod ≈
2π ·1MHz can be used. In our experiment we choose the modulation frequency
ωmod = 2π · 200 kHz as working point. At this frequency the beam shape at
high scanning voltages is still Gaussian and the horizontal waist can be tuned
up to 222 µm. This corresponds to an aspect ratio of 13 and matches the
expectation of Sec. 5.1.1. The chosen frequency further fulfills the requirement
ωmod � ωx since we do not expect larger frequencies than ωx = 2π · 2 kHz at
our experimental cycle; see Sec. 6.1.

Summarizing, we find as minimal beam waists wx = 24µm and wy = 17µm.
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Figure 5.7: Dependence of the scanned beam waist on the voltage Ugain (a)
and on the modulation frequency (b). The enlargement of wy in (a) is only due
to the slight angle of the scanning axis to the x-axis. In (b) the dependence on
fmod was measured for different aspect ratios. Higher scanning gains lead to a
lower maximum modulation frequency. For this measurements the new voltage
controlled oscillator VCO190-112T is used. In our experiment the modulation
frequency fmod = 200 kHz is chosen as working point.

By scanning the horizontal direction, wx can be enlarged up to 222µm, leading
to an AR of 13. The maximum power at the chamber is 18W. At the loading
phase a large beam area and a high power are crucial to increase the loading
efficiency. For the maximum scanning and the highest power we expect the
following trap frequencies according to Eqs. (3.26) and (3.31):

ωx = 2π · 106 Hz, ωygravity = 2π · 1.34 kHz, ωz = 2π · 14 Hz.

In this configuration we want to load atoms from the MOT to the dipole trap.

Vertical dipole trap

The vertical dipole trap beam is produced by a 10W broadband Yb fiber laser
source at 1064 nm and has an initial power of about 8W in the chamber. The
beam profile is elliptic with waists w2z = 55µm and w2x = 110µm. Due to
the limited access to the view ports of the chamber the vertical beam has
an angle α of 15◦ to the y-axis. The angle to the propagation direction z of
the horizontal beam amounts to α = 14◦. The definitions of these angles are
shown in Fig. 3.3. The vertical trapping beam is crucial in the later phase of
the evaporation process, to "close the door" such that atoms cannot escape
along the propagation axis of the horizontal beam. The evaporation process
will be discussed in detail in the next Chapter.
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Chapter 6

Measurements with atoms

In the previous Chapter we described our novel dipole trap setup based on the
scanning system. With this improvement we are now able to produce BECs
with larger atom numbers, as compared to our previous setup [Aik12]. The
parameters, which are crucial to reach this goal, are the spatial overlap of MOT
and dipole trap as well as the evaporation efficiency. The optimal evaporation
ramp for a high evaporation efficiency is part of the discussion in Sec. 6.2.
Before we start our search on the best evaporation ramp, it is necessary to
understand the geometry of the dipole trap. For this purpose we measure
temperature and trap frequencies in a single beam configuration for various
scanning voltages. Section 6.1 is dedicated to the investigation of the trapping
geometry. From these measurements we also can extract the experimental value
for the dynamic polarizability of erbium. We find Re(α) = (84 ± 2 ± 18) a.u.
for a dipole trap laser light operating at 1064 nm.

For a loading time of 5 s we prepare typically 2 · 107 atoms in the MOT at
a temperature of about 10µK. Thanks to the scanning system we can load up
to 6 · 106 atoms to the optical dipole trap at about 20µK for a loading time of
500ms. This corresponds to a loading efficiency of 30%, which is exceptionally
high. For a 10 s loading time we gain 3.5·107 atoms in the MOT and can load up
to 1.2 ·107 atoms to the dipole trap, corresponding to 34%. The huge numbers
in the dipole trap are a great improvement compared to the values obtained
in our earlier experiments [Aik12], where the maximum number was limited
to 3 · 106 atoms even for large numbers in the MOT. The results presented in
this chapter are for a loading time of 10 s of the MOT. These are the starting
conditions for the evaporative cooling process.

If not labeled differently the results shown in this Chapter have been mea-
sured with the further improved dipole trap setup; see Sec. 5.1.3. The values
for the beam waist and the power for this setup are:
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6 MEASUREMENTS WITH ATOMS

• The vertical beam waist wy at the focal point is 16.1µm.
• The horizontal beam waist wx at the focal point can be tuned from

26.9µm to 190µm. This corresponds to a maximal possible AR of about
12.

• The maximum power at the chamber of the beam depends on the scan-
ning voltage. Without scanning a power of 27W can be reached. For a
scanning voltage Ugain of 10V we measure a maximum power of 17W.
This is due to the lower diffraction efficiency of the AOM at the edge of
its bandwidth.

6.1 Characterization of trap geometries
A precise knowledge of the trap frequencies is crucial to determine the proper-
ties of the trapped sample, e.g. phase-space density and peak number density.
The trap frequencies are related to the depth and dimension (beam width) of
the trap, as indicated by Eq. (3.26). Different methods can be used to measure
the trap frequencies. From comparison between the trap frequency, the dipole
beam profile, and the laser intensity one can extract the dynamic polarizabil-
ity of the trapped sample. The determination of this quantity is from partic-
ular importance for theorists, since it gives them the possibility to test their
models for various parameters for the particular species. Before our studies,
experimental data on the dynamic polarizability of erbium was not available.
Additionally, we find a huge dependence of the lifetime of the atoms in the
dipole trap depending on the laser polarization.

6.1.1 Trap frequency measurements

The measurements of the trap frequencies give insight into the confinement of
the dipole trap laser beam. The basic principle of trap frequency measurements
is as follows. A thermalized sample is prepared in a specific trap. The cloud
is then excited by compressing, decompressing, or shifting the sample for a
short period of time. When the cloud is released to the original trap it starts
to oscillate. The trap is switched off after a variable holding time te and an
absorption image is taken. Additional free expansion, which is named time-of-
flight (TOF), increases the signal-to-noise ratio. Different methods are probed
to obtain reliable trap frequency measurements:
Power modulation: The strength of the trapping potential is changed by

either increasing the intensity or switching off the trap for a short pe-
riod of time. Therefore, the atomic cloud is compressed or released and
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6.1. Characterization of trap geometries

switching on the original trap leads to excitations of the breathing mode.
The typical modulation time for the switching-off method is one fourth
of the trap frequency. The breathing mode is observed by monitoring the
width of the atomic cloud for various holding times te in the final trap
after modulation. For an ideal thermal gas the breathing mode is equal to
twice of the trap frequency. In principle, with this method the frequencies
of all axes could be observed. However, the oscillation on the strongest
confining axis is the most dominant one. Therefore, the oscillations on
the weaker confining axes are hardly visible. An example measurement
for this method is shown in Fig. 6.1(b).

Magnetic gradient field: The gradient field can be used to tilt the dipole
trap along the vertical y-axis. Additionally the gradient field has also
an influence on the horizontal x- and z-axis1. This leads to a coupling
of the individual oscillations, thus making the distinction between the
individual trap frequencies less reliable.

Individual modulation of each axis: Most precise measurements can be
done when the sample is only modulated along the monitored trap axis.
In our case the strongest confining axis is the y-axis (axis of gravity).
Therefore, the corresponding trap frequency can be obtained by switch-
ing off and on again the horizontal dipole trap beam, as discussed above.
For the measurement of νx we use the scanning system itself. By slowly
changing the voltage Uoffset the atomic sample is shifted adiabatically
along the x-axis and starts oscillating, when it is released to its original
position. The center-of-mass motion around the equilibrium position is
observed to extract the trap frequency. This measurement can be done
even during wx is enlarged by the scanning system. An example of this
measurement is shown in Fig. 6.1(a). For the z-axis we can use the ver-
tical beam, which provides a strong confinement in the axial axis of
the horizontal beam to excite oscillations. The vertical beam is typically
switched on for a few milliseconds.

In conclusion, best results are obtained by modulating each axis individually.
An additional reason for this is that the axis of our imaging system has an
angle of 28◦ to the z-axis in the x-z-plane; see Fig. 3.5. As a consequence,
simultaneous oscillation along the x- and the z-axis cannot be distinguished if
they have similar frequencies. Too strong excitations of the trapped cloud can
lead to large atom loss and heating. An adequate modulation manifests itself in
many observable oscillations of the trapped atomic cloud. A damping of these

1The vertical gradient is produced by two coils in Anti-Helmholtz configuration. Due to
div ~B = 0 the creation of a vertical gradient also leads to horizontal gradients.
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Figure 6.1: Typical trap frequency measurements in a single beam dipole trap
configuration. In Figure (a) the sample was prepared at a laser power of 2 W,
and an AR of 2. To excite the center-of-mass oscillation along the x-axis the
trapped cloud was shifted by changing the value of Uoffset for 60 µs. In Figure
(b) a breathing mode oscillation is shown. Switching off the beam for 50 µs
leads to an excitation of this mode, especially along the strong confining y-
axis. For this measurement the sample was prepared at 2 W with the scanning
system being off. We obtain trap frequencies ωx = 2π·454 Hz and ωy = 2π·1085
Hz, respectively.

oscillations indicates that the trapping potential is not perfectly harmonic.

6.1.2 Atomic polarizability

The knowledge of the atomic polarizability of erbium is of great importance
for experiments and theories. For instance, theorists are able to extract the C6

and ∆C6 values of this element if a precise knowledge of the polarizability is
available; see Sec. 2.3. The atomic polarizability Re(α) can be obtained from
trap frequency measurements. Here a single beam dipole trap is used. As dis-
cussed in Chap. 3, there is a very convenient relation between Re(α) and the
optical dipole trap frequencies ν:

νx =
1

2π

√
P · 8A · Re(α)

w3
xwymπ

,

νy =
1

2π

√
P · 8A · Re(α)

w3
ywxmπ

, (6.1)
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6.1. Characterization of trap geometries

where P is the power of the dipole trap beam, wx and wy are the beam waists in
the horizontal and the vertical axis, respectively, and A = 1.65 · 10−41/(2ε0c)
is the conversion factor to extract the polarizability in atomic units. These
formula can be derived from Eqs. (3.2), (3.18), and (3.26), where

νx ≡
1

2π

√
4Û

mw2
x

, νy ≡
1

2π

√
4Û

mw2
y

,

are the trap frequencies obtained from the harmonic approximation of the
dipole trap potential and

Û = ŨI0 = − 1

2ε0c
Re(α)

2P

πwxwy
,

is the total trap depth. In the experiment we measure independently the trap
frequencies as well as the beam waists wx and wy. The latter are obtained
by beam profile measurements with a CCD-camera, see Sec. 5.2, and have in
general the highest uncertainty. For the measurements of the trap frequencies
we use the methods discussed above.

In a single beam configuration the trap frequencies are measured at different
dipole trap conditions. To change the trapping potential we either vary the
trapping power or change the trap aspect ratio with the scanning system.
Power variation: For this measurement we prepare a cold and thermalized

atomic sample. Therefore, the laser power is first decreased to 0.7W,
leading to temperatures of about 2µK. Then the power is increased
to the desired value, thus recompressing the sample. After one second
of thermalization the atomic cloud is modulated for a few micro sec-
onds to excite oscillations and to extract the trap frequencies νx and νy.
The TOF time is typically 10ms. Here the scanning voltage was fixed
to 0V. This measurement was done with our first dipole trap setup,
discussed in Sec. 5.1.3, with beam waists wx = (24.0 ± 1.8)µm and
wx = (17.0 ± 0.5)µm. Equation (6.1) is used as fit model to extract
the atomic polarizabilities. In Fig. 6.2 we summarize our measurements
of the trap frequencies as a function of the laser power. The solid lines
are the fits to the set of data.

Aspect ratio variation: Similar to the above discussed procedure a cold and
thermalized atomic sample is prepared by evaporating down to about
2µK and recompressing the sample with a power of 2W. During the
recompression the trap aspect ratio is adjusted by changing Ugain to the
desired value. We measure trap frequencies νx and νy for various scanning
voltages Ugain of up to 3.5V. Our current dipole trap setup was used to
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Figure 6.2: In a single beam configuration we have measured trap frequencies
for different powers of the horizontal dipole trap beam in x- (a) and y-direction
(b). The solid line is a fit to the data according to Eq. (6.1). The fit yields for
the atomic polarizabilities Re(α) = (84±4) a.u and Re(α) = (82±6) a.u for the
data of Fig. (a) and Fig. (b), respectively. The obtained errors are statistical
only.

perform this set of measurements. The beam waists without scanning
are found to be wx = (27.0 ± 2.0)µm and wy = (16.1 ± 0.5)µm. The
dependence of the horizontal waist on Ugain in the region up to 3.5V is
found from offline measurements similar to Fig. 5.7:

wx = [−345.8 + 372.7 · exp(0.078 · Ugain)]µm. (6.2)

This dependence is used to refine the fit model of Eq. (6.1). Figure 6.3
shows the fit to the measured trap frequencies as a function of Ugain.

In Fig. 6.4 we summarize the extracted atomic polarizabilities of each set of
measurements. The data points are fitted with a constant to find the best value
of Re(α):

Re(α) = (84± 2) a.u. (6.3)

As discussed above the error of this value is statistical only. In the fits the
uncertainties of the trap frequencies and the powers are included2. Up to now
the uncertainties of the beam waists have not been considered. In the following
discussion we want to give an upper and a lower bound of the uncertainty of
the measured atomic polarizabilities.

2In our experiment the trap frequency measurements typically have an uncertainty of
3%. The uncertainty of the power is about 1% and is related to the used photo-diode and
to the whole control circuit.
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Figure 6.3: The trap frequencies were measured for different scanning voltages
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was set to 2 W. In the fitting function the dependence of the waist wx on the
voltage Ugain is included; see Eqs. (6.1) and (6.2). From the fit we can extract
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Figure 6.4: All obtained values are plotted in one graph to extract the best
value and the statistical error of the polarizability. The solid line is a constant
fit to the data that gives Re(α) = (84± 2) a.u.

Lower bound: To determine the lower bound value we use the theory of error
propagation. Equation (6.1) is solved to Re(α) and for each data point
we calculate the corresponding error of the polarizability according to
the above discussed uncertainties of ν, P , wx and wy. We then use all
the errors to calculate the total error and find ±3 a.u.
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6 MEASUREMENTS WITH ATOMS

Upper bound: Trap frequencies and beam powers can be measured with a
high precision, where for the beam waist measurements systematic errors
hardly can be avoided. For the offline beam characterization the last part
of the dipole trap setup is copied since it is not possible to measure the
beam profile in the vacuum chamber; see Sec. 5.1.3. Imperfect alignment
of the optical elements in the copied path can lead to a deviation between
the measured and the actual beam waists. To obtain the beam waists we
take multiple data points along the propagation direction of the laser
beam and fit the set of data with the theory of a Gaussian beam. Since
the beam profile of the used laser is not perfectly Gaussian, additional
deviations are expected. To take the systematical error into account we
assume the beam waists to be wrong by ±2µm. This assumption is used
to calculate the polarizability again by varying the beam waists in the
fit functions of Figs. 6.2 and 6.3. The observed differences to each above
discussed polarizability are then used to determine the overall systematic
error. The error propagation yields ±18 a.u.

In conclusion we find for the dynamic polarizability of erbium at 1064-nm:

Re(α) = (84±18
±3 ± 2) a.u. (6.4)

including lower and upper bound of the systematical errors as well as the
statistical error.

This quantity is in striking contrast to the theoretical predicted polariz-
ability of 159 a.u. ; see Sec. 4.1. This seems to be typically for lanthanides,
since the dynamic polarizability of dysprosium has also been overestimated in
comparison to the measured quantity [Dzu11, Lu11].

To cross-check the obtained quantity for the dynamic polarizability we use
the mathematical model to calculate the expected trap depth; see Appendix
B. The depth is compared to the corresponding, measured temperature of
the atomic sample. We find well agreement to the typical correlation kBT ≈
1/10 · Udip.

In future we plan to add lithium to our experiment. For this element the
dynamic polarizabilities are known [Tan10]. This knowledge can be used to
extract the polarizability of erbium. A proposal by Cronin et al. [Cro09] shows
that the ratios of polarizabilities of different species can be determined accu-
rately.

6.1.3 Comparison to offline characterization

From the results shown in Fig. 6.3 we can also extract the trap aspect ratio AR
of the scanned beam for different scanning voltages Ugain. In Fig. 6.5 we plot the
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Figure 6.5: Comparison between the aspect ratio of the horizontal dipole
trap obtained from trap frequency measurements to the expected AR from the
offline beam characterization.

measured AR and the AR expected from our offline characterization. For small
values of Ugain the measured and the expected AR nicely agree. At a higher
scanning voltage the two values disagree by up to 30%. An explanation for this
can be an introduced anharmonicity in the x-axis lowering the trap frequencies
νx, thus increasing the AR. Suspects are the slight angle of the scanning axis
to the x-axis, and a non perfectly Gaussian shape of the time-averaged beam.
Systematic errors in the measurement of the beam profile could also contribute
to the observed differences. One problem is, that the measurement of the beam
profile can only be done at a "copied chamber", and thus could differ from the
actual profile. However, for the experimental process we are only interested in
the actual trap geometry, determined by trap frequency measurements. From
the trap frequency measurements we find a maximal possible AR of 15, which
gives us a huge flexibility for the modification of the trapping potential.

6.1.4 Polarization dependence of the trapping geometry

In a recent paper on the polarizability of polar molecules, it was shown that
the polarizability strongly depends on the angle of the linear polarization of
the dipole trap laser beam [Ney12]. Tuning the polarization thus changes the
trap geometry. This is related to the tensorial part, which accounts for the
dependence of the polarizability on the angle between the electric field and
the quantization axis. The observation also could be valid for dipolar non-
S state atoms, such as erbium. As a preliminary investigation we measured
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Figure 6.6: We load atoms to the dipole trap and simply let them evolve in
the same trap. Thereby we monitor the atom number right at the end of the
holding time. The linear polarization of the trapping laser light is adjusted
manually, rotating a λ-half wave-plate, where 232◦ and 188◦ correspond to p-
and s-polarization, respectively. For s-polarization the field of the laser light is
aligned along the quantization axis of the atoms. We find a strong dependence
of the lifetime on the laser polarization, indicating loss processes for a specific
polarization angle. The lifetimes are extracted by fitting the data with an
exponential decay function.

the trap geometries for different angles of laser polarization, but could not
observe a measurable difference in trap frequencies and temperature. This
matches our theoretical calculations, where we found that the tensorial part
of the polarizability for the ground state of erbium does not play a significant
role; see Sec. 4.1. However, we found a dramatic change in the stability of the
trapped atoms. For this measurement we prepare 3.5 · 106 atoms in a single
beam configuration with a power of 18 W and an AR of 10 after a loading time
of 5 s of the MOT. For a specific angle of the laser polarization we observe huge
and very fast losses of atoms. In Fig. 6.6 we report the number of atoms for a
variable holding time directly after loading to the optical dipole trap. The log-
lin scale reveals the non-exponential behavior of the loss dynamics. At shorter
holding time we generally see faster losses compared to the one observed at
longer time. This losses can be related to plain evaporation. For longer holding
times a change of 20◦ in the angle of the linear polarization gives a change of
one order of magnitude in tlife. The investigation of the reason for these losses
will be part of future experiments.
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6.2. A new Bose-Einstein condensate

6.2 A new Bose-Einstein condensate
In our recent papers, see Ref. [Fri12] and Appendix C, we demonstrated a
simple and efficient approach to trap erbium atoms and cool them to quantum
degeneracy. During this thesis, we could further improve our system and reach
even higher atom numbers in the Bose-Einstein condensate. In this Section,
we will discuss the optimized evaporation process used with the new trap. For
a high evaporation efficiency the ratio between elastic and inelastic collisions
in the trap is crucial. This ratio is determined by the density, which can be
changed by modifying the trap geometry. In our previous setup simply the
power of the horizontal and vertical dipole trap were changed to reach a good
evaporation efficiency. The scanning system gives us an additional, optional
"knob" to optimize the collisional rate. Especially at the end of the evaporation
process high densities can lead to large three-body losses. With the scanning
system we have a versatile tool to reduce the losses. To control the scanning
system Ugain is calibrated to the trap AR. Therefore, we fit the data of Fig. 6.5
and implement the obtained function in the experiment control system. The
AR can then be controlled for every evaporation step via this system.

The evaporation efficiency is determined by the ratio of the change in phase-
space-density (D) to the change in atom number in a double-logarithmic scale:

ε = −
dD
D
dN
N

, (6.5)

where the phase-space-density D is defined as

D =

(
~
kB

)3

ωxωyωz
N

T 3
. (6.6)

This equation outlines that high atom numbers and low temperatures are
crucial for a high phase-space-density. When the phase-space-density is equal to
about 1.2 quantum degeneracy is reached. An additional parameter to describe
the atomic sample is the peak-number density. It gives the maximum number
of particles per area and can be derived from the density distribution in a
harmonic trap:

n0 = N

(
m

2πkBT

) 3
2

ωxωyωz. (6.7)

The new BEC

We load 1.2 · 107 atoms to the optical dipole trap with a power of 20W and a
scanning AR of 10. The thermalized temperature of the atoms directly after
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loading is about 20µK. These are the starting conditions for the evaporation
process. Figure 6.8 shows the whole evaporation ramp for the creation of the
new BEC. At every evaporation step we adjust the power of the horizontal and
the vertical dipole trap beam, as well as the AR. We monitor the atom num-
bers, the temperatures, and the trap geometries by frequency measurements for
a selection of evaporation steps. These data are fed to our mathematical model
to determine the trap depths, the phase-space-densities and the peak-number
densities. For these calculations we use the measured atomic polarizability of
erbium. The calculation of the trap depths already includes the contribution
of both the horizontal and the vertical dipole trap beam. For the beam waists
of the horizontal beam we use wy = 16.1µm and wx = (AR · wy)µm where
for the vertical beam wx = 112µm and wz = 70µm are the expected beam
waists3. The dashed lines in Fig. 6.8 show the expected trap frequencies for
each power and AR of the crossed dipole trap according to our mathemat-
ical model, discussed in Sec. 3.3. In most cases we find well agreement with
the actual measured trap frequencies. The maximal discrepancy between the
measured and the calculated trap frequencies is about 20%. One explanation
for this is the difficulty to measure the beam waists precisely, as well as the
systematic errors discussed in Sec. 6.1.2. Another effect that could justify this
discrepancy is the movement of the atomic sample when the vertical dipole
trap beam is switched on. We see a shift of about 200µm of the center of the
cloud in the axial direction of the horizontal dipole trap beam. This is related
to the non perfect crossing of the beams. The atoms are shifted out of the fo-
cal point of the horizontal beam, which results in a change of the confinement.
Thus, different trap frequencies than expected can occur.

After about 5 s of evaporation an onset of a BEC is achieved, which corre-
sponds to a phase-space-density of 1.2. A very interesting feature of the applied
evaporation process can be seen in the plot of the peak-number density. When
the vertical trapping beam is turned on a huge increase of n0 is observed, where
it is then slowly decreased to reach a high evaporation efficiency. Just at the
very last evaporation step we gain a pure BEC.

The whole evaporation process takes 6.9 s and leads to a final number in
the pure BEC of up to 2 · 105 atoms. In comparison to our previous setup
this number is larger by a factor of 3 ; see Appendix C. At the end of the
evaporation process the increase of the AR by the scanning system is ideal to
decrease the density, and thus three-body losses. Best performance is found for

3The used beam waists of the vertical dipole trap beam differ from the measured waists
in the focal point. For the alignment of the crossing of the two dipole trap beams only the
atom number in the crossed region is monitored. Therefore, it is very likely, that the focal
points of the beams are not perfectly overlapped.
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Figure 6.7: Double-logarithmic plot of the phase-space-density during the
evaporation ramp as a function of the atom number. The overall evaporation
efficiency ε until quantum degeneracy is reached is 3.4. When the vertical beam
is switched on a huge evaporation efficiency is observed.

an AR of 7 at the end of the evaporation process. Due to the large AR at the
loading phase we start with low trap frequencies, then compress the sample
and finally evaporate it down. In the pure BEC we find peak-number densities
of up to 8 · 1013 cm−3.

Figure 6.7 shows the phase-space-density as a function of the atom number
during the evaporation process. The overall evaporation efficiency until D =
1.2 is reached is ε = 3.4, which is very high. When the vertical dipole trap
beam is switched on we find an evaporation efficiency of 16. In the latter phase
of the evaporation process the efficiency decreases to ε = 2.
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Chapter 7

Conclusion and Outlook

The goal of my master thesis was to implement an optical dipole trap with
tunable geometry to our erbium experiment. Optical dipole traps are used to
load atoms from the MOT and evaporatively cool them down to quantum
degeneracy. A flexible geometry can help to optimize the loading of the optical
dipole trap and the evaporative cooling efficiencies. This improvement can be
used to reach large atom numbers in the trap.

The potential created by a laser beam depends on the intensity and profile
of the laser. The depth of the created dipole trap is related to the atomic
polarizability of the trapped atomic species. The polarizability depends on the
atomic spectrum of the particular species, as well as on the wavelength of
the laser beam. Erbium is a multi-valence electron system and shows thus a
complex and rather unknown energy spectrum. Theoretical and experimental
efforts are taken to further improve the knowledge of the energy level structure.
During my thesis work I developed a mathematical model to calculate the
atomic polarizability of erbium. For the calculation every known dipole allowed
transition is taken into account according to its line strength factor. For the
ground state of erbium atoms we find a dynamic polarizability of 159 a.u. for a
dipole trap operated at 1064-nm. This value accounts for both the scalar and
the tensorial part of the atomic polarizability. Furthermore, the mathematical
model allows to fully simulate the trapping geometry of the crossed dipole trap
used in our experiment.

In a first crossed dipole trap setup we managed to evaporatively cool down
erbium atoms to quantum degeneracy – for the first time. The corresponding
publication is given in Appendix C. This knowledge was used to design the
optical setup for the horizontal dipole trap laser beam with tunable ellipticity.
To dynamically tune the trapping geometry we use a scanning system consist-
ing of an AOM. An AOM deflects a laser beam depending on the frequency of
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5 V 

x 

y Ugain = 0 V 

arcus-cosine square 

Ugain = 3 V Ugain = 3 V 

(a) (b) (c) 

Figure 7.1: Scanning system gallery for a scanning voltage of 0 V (a) and 3
V; (b) and (c). The shape of the beam depends on the function used to scan
the beam. Here we show two examples. An arcus-cosine function leads to an
elliptic Gaussian beam shape (b), whereas a square function creates two beams
(c). The pictures were taken with the CCD-camera beam profiler.

sound waves in the crystal. A change of this frequency thus changes the angle
of deflection and a scan over a range of frequencies leads to a time-averaged
beam profile. A lens positioned one focal length after the AOM translates the
deflection into a horizontal displacement of the beam. If the frequency of the
AOM is scanned fast enough compared to the trap frequency of the dipole
trap a time-averaged potential is created. The ellipticity of this time-averaged
potential can be tuned by the scanning system. The optical setup of the hor-
izontal beam was optimized several times and we finally find ideal working
conditions with beam waists at the position of the atoms of wx = 27µm and
wy = 16µm along the horizontal and vertical axis, respectively. The horizontal
waist can be tuned up to 190µm, leading to a theoretical maximal possible
aspect ratio of 12. The vertical dipole trap beam has a waist of 55µm along
the axial direction of the horizontal beam and a waist of 110µm perpendicular
to this direction in the horizontal plane. In Fig. 7.1 the profile of the horizontal
dipole trap beam for a selection of scanning functions is shown.

With the new flexible dipole trap we can load up to 35% of the atoms from
the MOT to the optical dipole trap at a temperature of about 20µK. For a
loading time of 10 s of the MOT this number typically corresponds to 1.2 · 107

atoms. For the optimized evaporation process we reach up to 2 · 105 atoms
in the pure BEC. The evaporation efficiency of this process is 3.5, which is
very high. In comparison to our first setup we could triple the atom number
in the BEC. Especially at the end of the evaporation process the scanning
system is used to weaken the confinement in the trap thus suppressing three-
body losses. In Fig. 7.2 a 3D density profiles of absorption images for different
evaporation steps are shown. For lower, and lower temperatures the matter
waves of the atoms start to overlap finally forming a Bose-Einstein condensate,
a macroscopic occupation of the lowest quantum state.
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7 CONCLUSION AND OUTLOOK

Figure 7.2: 3D density profile showing the phase-transition of the erbium
atomic cloud to a Bose-Einstein condensate.

Additionally the scanning system can be used for trap frequency measure-
ments. Here the atomic sample is first adiabatically shifted in x-direction. Then
a sudden switch back to the original trap leads to center-of-mass oscillations.
From trap frequency measurements we find that we can reach even higher
aspect-ratios than expected from the offline beam configuration. This behavior
could be due to anisotropical effects, and further increases the tunability of
the dipole trap. The maximal possible aspect-ratio is measured to be 15.

First results based on my work are measurements of the atomic polariz-
ability of erbium. Here we compare trap frequency measurements with our
mathematical model to extract the dynamic polarizability. In atomic units we
find a value of Re(α) = (84±18

±3 ± 2) a.u. where ±3 and ±18 indicate the lower
and the upper bound of the systematical error of the measured polarizability
and ±2 is the statistical error. This value is smaller by 47% compared to the
one calculated by our mathematical model. A similar discrepancy also has been
observed for dysprosium [Lu11], which is part of the lanthanide series as well.
The obtained value will help to theorists to further improve their theoretical
models for erbium, including investigations of the isotropic and anisotropic part
of the van der Waals interaction as well as theoretical researches on Feshbach
resonances.

In future experiments we plan to use the scanning system to investigate
the geometry dependence of anisotropic quantum effects in dipolar gases. The
influence of the geometry on the behavior of a dipolar gas was already demon-
strated by the group of T. Pfau [Koc08]. We are confident that with our tunable
dipole trap we can precisely map the behavior of the system when the geometry
is changed in a continuous way. Due to the high magnetism of erbium quan-
tum fluctuation are expected to be sizable and to manifest themselves in the
TOF dynamics of a Bose gas as well as in the collective modes [Lim11]. Since
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7 CONCLUSION AND OUTLOOK

quantum fluctuations are expected to depend on the aspect-ratio of the trap,
our new flexible dipole trap setup will be an ideal environment for this inves-
tigation. Other proposals show that in a dipolar BEC confined in a quasi-2D
trap a rotonlike spectrum can emerge [San03, Bla12]. This fascinating phe-
nomena is unique to dipolar BECs and may also can be accessed by means of
the scanning system.
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Appendix A

Electronics

Figure A.1 shows the electronic circuit for the creation of the frequency signal,
which is sent to the AOM-driver. The modulation signal Umod consists of the
three signals Uoffset, Ugain and Usignal and is generated by a mixer:

Umod = Uoffset +
Usignal Ugain

10 V
(A.1)

The supply voltage is ±18V. The maximum values for Uoffset and Ugain are
+10V, and for Usignal the voltage should not exceed ±10V. The full control
on the signal Umod is then used to change the radio-frequency signal created by
a VCO in the AOM-driver. The signal is then amplified and sent to an AOM.

In Fig. A.2 the electronic circuit of the used AOM-driver is shown. As
discussed in Sec. 5.1.4 some electronic parts had to be exchanged to achieve an
utilizable radio frequency signal.

In Fig.A.3 the box of the AOM-driver is shown. The electronic circuit to
produce Umod is implemented in this box on the left hand side. The right hand
side was changed, as discussed at Fig.A.2.
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A ELECTRONICS

Figure A.1: Electronic circuit used to generate the signal to scan the fre-
quency of the AOM; see Sec. 5.1. The mixer AD 734 from Analog Devices
creates the output signal Umod from the input signals Uoffset, Usignal and
Ugain.
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A ELECTRONICS

Figure A.3: Realized electronic box for the control of the AOM.
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Appendix B

Dipole trap model

On the following pages the source code of the MATHEMATICA file to model
the trapping potential of our dipole trap for the ground state of bosonic er-
bium atoms is shown. The definitions of the various formulas can be found in
Cha. 3.3.

The file is subdivided into five main parts:
Constants and data import: In this part the constants used in the file are

defined. Also the data of all dipole allowed transitions contributing to
the dipole trap are imported, hence the wavenumber of the allowed tran-
sitions from the ground to the excited states, as well as the total an-
gular momentum quantum number J and the linewidth of the excited
states [Wya12]. Furthermore, each linewidth is adapted according to the
line strength factors related to the 3J-symbol. The total dipole poten-
tial and the scattering rate are calculated from Eq. (3.13) and Eq. (3.14)
(Here the intensity I(~r) is set to 1).

Dipoletrap formula: In this section the functions to calculate the total in-
tensity profile for crossed elliptic beams under an angle are defined. With
this intensity the real total dipole potential and the scattering rate – for
each beam – can be calculated.

Parameter: In this part all known parameters as beam waists, powers, atom
number and temperature are added.

Output: Before the trapping parameters are calculated, the trapping geom-
etry has to be recalculated each time the input parameter are changed.
Therefore we calculate the trap depth of the horizontal and the vertical
dipole trap, the effective beam waists and Rayleigh ranges due to the
angles α and β between the beams, the trap frequencies, the scattering
and heating rates, the phase space density and the peak number density,
the influence of the gravity on the vertical confinement as well as the
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B DIPOLE TRAP MODEL

magnetic field gradient to levitate the trap against gravity.
Figures: The calculated data are used to plot the change of the dipole trap

potential because of the gravity, as well as the 3D trapping profile along
each axis.

This model also can be used in any other ultracold experiment. Here is a list of
the values, which have to be changed to adapt this model to any other element
and trapping geometry:

• the wavelength λ of the used dipole trap laser – here given as λ1064.
• the trapping potential Udip for an intensity I of one – here given as U1064.
• the scattering rate Γsc for an intensity I of one – here given as Γ1064.
• In this file the two values U1064 and Γ1064 are calculated from imple-

mented data, which includes the contribution of all the dipole allowed
transitions from the ground to the excited states for bosonic erbium
atoms according to their line strength factors [Wya12]. U1064 is nothing
else than the atomic polarizability and already includes the scalar and
the tensorial part.

• the horizontal and the vertical waist of each laser beam – here given
as waist1y ,waist1x for the horizontal beam and waist2z ,waist2x for the
vertical beam.

• the power of each laser beam – here given as power1 and power2.
• the angles between the two laser beams α and β; the definition of these

values can be found in Cha. 3.3.
• As an additional feature the model also calculates the phase-space-density

(psd) and the peak number density (npeak). To get the right results, one
also needs to change the values for the atom number (Natom) and the
temperature (Tatom) in the trap.
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Clear@"Global`*"D
c = 299 792 458H*

m

s
*L; g = 9.804864698H*

m

s2
*L;

hbar = 1.054571726*10-34H*Js*L; h = hbar*H2 PiLH*Js*L;

kB = 1.3806488*10-23H*
J

K
*L; µB = 9.27400968*10-24 H*

J

T
*L;

ermass = 166*1.660538921*10-27H*kg*L; Ε0 = 8.854187817*10-12H*
As

Vm
*L;

Λ1064 = 1064*10-9H*m*L; Ω1064 =
2 Pi*c

Λ1064H*s-1*L;

Import dataH*Import data from .dat file,

including all allowed transitions from the ground to excited states*LH*wzgr imports all the wavenumbers from the transition of the ground to the excited states*LH*Jex imports all the total angular momentum quantum numbers of the excited states*LH*ggr1 imports all the linewidths of the excited states times the statistical weight

of these levels H15L*L
AppendTo@$Path, NotebookDirectory@DD;

file = ImportA"Er_groundtransition.dat", "Table"E;

ground = file@@19 ;; 1194DD;

wzgr = ground@@All, 7DD;

Jex = Round@ground@@All, 3DDD;

ggr1 = ground@@All, 10DD;H*Calculate linewidth G and substitute by known measured G values for the 401 nm and 583 nm line;

The multiplication with the WignerJ accounts for the line strength factor of each transition*LH*Calculate the optical transition frequencies*L
ggr =

ggr1

15
;

WignerJ = Table@H2 J + 1L*ThreeJSymbol@86, -6<, 81, 0<, 8J, 6<D^2, 8J, Jex<D;

Ggr = ReplacePart@ggr, 8836< ® 1.8686*10^8, 88< ® 1.17*10^6<D* WignerJ;

Ωgr = 2*Pi*c� 10-2

wzgr*103
H*s-1*L;

H*Dipoletrap formula*LH*Calculates the potential depth of a dipole trap depending on the transitionfrequency

Ωa and the linewidth Gamma of the excited state Hwith incoming light Λ=1064nmL*L
UAGamma_, Ωa_E := - 3*Pi*c2 *

Gamma

2*Ωa3
*

1

Ωa - Ω1064
+

1

Ωa + Ω1064

GammascatAGamma_, Ωa_E := 3*Pi*c2 *
1

2*hbar*Ωa3
*

Ω1064

Ωa

3
*

Gamma

Ωa - Ω1064
+

Gamma

Ωa + Ω1064

2

H*Potentialdepth Hatomic polarizabilityL and scattering rate of the dipole trap;

just intensity has to be added*LH*Consider all known transitions from groundstate to other states*L
U1064 = Sum@U@Ggr, ΩgrD@@iDD, 8i, Length@ΩgrD<DH*J

m2

W
*L

ReΑ = -U1064*2*Ε0*c�H0.16487776*10^-40L a.u

Gsc1064 = Sum@HGammascat@Ggr, ΩgrDL@@iDD, 8i, Length@ΩgrD<DH*s-1 m2

W
*L

-4.93837 ´ 10-37

159.009 a.u

4.98914 ´ 10-12
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Dipole trap formulaH*Gaussian beam waist*L
wAw0_, z_E := w0 1 +

z

zR@w0D 2

H*Rayleigh length*L
zRAw0_E = Pi*

w02

Λ1064
;

H*Rayleigh length elliptic beam*L
zRellAwx_, wy_E = HzR@wxD zR@wyDL� . 1

2
*IzR@wxD2 + zR@wyD2M ;

H*Calculates waist and Railey length of an elliptic beam having an angle alpha to

the coordinate system in the y-z plane

Η parameter used for =1: determining only the new beamwaist; =

2: for including into trap frequencyHcontribution of axial confinment is half of radial confinementL*L
wΑangleAwz_, wx_, Α_, Η_E :=

Cos@Α *Pi�180D2

w@wz, 0D2
+ Sin@Α *Pi�180D2 � IΗ *zRell@wz, wxD2M -

1
2

;

zRellangleAwz_, wx_, Α_, Η_E :=
Sin@Α *Pi�180D2

w@wz, 0D2
+ Cos@Α *Pi�180D2 � IΗ *zRell@wz, wxD2M -

1
2

;

H*calculates waist change of an elliptic beam having an angle beta to the coordinate

system in the x-z plane*L
w2zΒangleAwz_, wx_, Β_, Α_, Η_E := Cos@Β *Pi�180D2 � wΑangle@wz, wx, Α, ΗD2 +

Sin@Β *Pi�180D2

w@wx, 0D2

-
1
2

w2xΒangleAwz_, wx_, Β_, Α_, Η_E := Sin@Β *Pi�180D2 � wΑangle@wz, wx, Α, ΗD2 +
Cos@Β *Pi�180D2

w@wx, 0D2

-
1
2

H*Intensity of the light beam depending on waists w0x and w0y,Power P,

radial compontents xHhorizontalL and yHverticalL and axial distance z*L
intensityAP_, w0x_, w0y_, x_, y_, z_E :=

H2*PL�HPi*w@w0x, zD*w@w0y, zDL*ExpA-2*
x2

w@w0x, zD2
+

y2

w@w0y, zD2
E

H*Horizontal beam: Potential depth in J and µK

Scattering rate*L
Upotgr1Ax_, y_, z_E := U1064*intensity@power1, waist1x, waist1y, x, y, zD;

Tpotgr1Ax_, y_, z_E := Upotgr1@x, y, zD 1

kB
106

Gscat1Ax_, y_, z_E := Gsc1064*intensity@power1, waist1x, waist1y, x, y, zD;H*Vertical beam: Potential depth in J and µK

Scattering rate*L
Upotgr2Ax_, y_, z_E := U1064*intensity@power2, waist2x, waist2z, x, z, yD;

Tpotgr2Ax_, y_, z_E := Upotgr2@x, y, zD 1

kB
106

Gscat2Ax_, y_, z_E := Gsc1064*intensity@power2, waist2x, waist2z, x, y, zD;H*Euler rotation on the x and z angle*L
xangleAx_, z_E := x *Cos@beta*Pi�180D + z*Sin@beta*Pi�180D;

yangleAx_, y_, z_E := x *Sin@alpha*Pi�180D Sin@beta*Pi�180D + y *Cos@alpha*Pi�180D -

;
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z*Sin@alpha*Pi�180D Cos@beta*Pi�180D;

zangleAx_, y_, z_E := -x *Cos@alpha*Pi�180D Sin@beta*Pi�180D + y *Sin@alpha*Pi�180D +

z*Cos@alpha*Pi�180D Cos@beta*Pi�180D;H*Spatial potential of vertical beam due to angles Α and Β*L
Upotgr2angleAx_, y_, z_E :=

U1064*intensity@power2, waist2x, waist2z, xangle@x, zD, zangle@x, y, zD, yangle@x, y, zDD;

Tpotgr2angleAx_, y_, z_E := Upotgr2angle@x, y, zD 1

kB
106;

Parameter

y .. direction of gravity Haxial direction of vertical beamL
x .. horizontal, perpendicular to horizontal beam
z .. axial direction of horizontal beamH*Horizontal beam*L

waist1y = 16.1 * 10-6; waist1x = 27 * 10-6; power1 = 1;H*Vertical beam*L
waist2z = 55 * 10-6; waist2x = 110 * 10-6; power2 = 10;H*Angles between vertical and horizontal beam; Α..rotation in y-z-plane;

Β..rotation in x-z-plane;

Corresponds in our experiment to the angle of the vertical beam to the axis

of gravity*L
alpha = 15H*°*L;H*Corresponds in our experiment to the angle of the horizontal beam in the

horizontal planeHhalf angle between viewports = 14°L*L
beta = 14H*°*L;H*Measured data*L
Natom = 2.5 * 106;

Tatom = 3.6 * 10-6;

OUTPUTH*Effective potential depth of the dipole trap in µK depending on the radial and

axial parameters of the horizontal beam*L
U1gr = -Upotgr1@0, 0, 0D;

T1gr = -Tpotgr1@0, 0, 0D;H*Effective potential depth of the dipole trap in µK depending on the radial and

axial parameters of the vertical beam*L
U2gr = -Upotgr2@0, 0, 0D;

T2gr = -Tpotgr2@0, 0, 0D;H*Waist�Rayleigh length change of vertical beam due to angle between beams*L
w2znew = NAw2zΒangle@waist2z, waist2x, beta, alpha, 2DE;

w2xnew = NAw2xΒangle@waist2z, waist2x, beta, alpha, 2DE;

zRell2new = NAzRellangle@waist2z, waist2x, alpha, 2DE;H*Gravity deforms potential in vertical direction;

horizontal and vertical beam calculated independentlyHz-y-: particles with higher "altitude" have higher potential energy and could

therefore escape from the DT; *L
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Hz-y-: particles with higher "altitude" have higher potential energy and could

therefore escape from the DT; with a magnetic field gradient Blev this can be compensated*L
UgravAy_E = ermass*g* y;

Blev =
Ugrav@1D

7*µB
*102 H*

G

cm
*L;

T1gravityAy_E = IUgravAy*10-6E + Upotgr1A0, y*10-6, 0EM 106

kB
H*µK*L;

Min1 = FindMinimumA9T1gravity@yD, -waist1y*106 £ y £ waist1y*106=, 8y, 0<EH*µK*L;

Max1 = FindMaximumA9T1gravity@yD, -10*waist1y*106 £ y £ Hy �. Last@Min1DL=, 8y, 0<EH*µK*L;

T1real = -HFirst@Min1D - First@Max1DLH*µK*L;

T1real,y = If@power1 <= 0, 0, If@ T1real < 0, 0, T1realDDH*µK*L;

U1real,y = T1real,y *
kB

106
H*J*L;

T2gravityAy_E = IUgravAy*10-6E + Upotgr2angleA0, y*10-6, 0EM 106

kB
H*µK*L;

Min2 = FindMinimumA9T2gravity@yD, -zRell2new *106 £ y £ zRell2new *106=, 8y, 0<EH*µK*L;

Max2 = FindMaximumA9T2gravity@yD, -10*zRell2new *106 £ y £ Hy �. Last@Min2DL=, 8y, 0<EH*µK*L;

T2real = -HFirst@Min2D - First@Max2DLH*µK*L;

T2real,y = If@power2 <= 0, 0, If@ T2real < 0, 0, T2realDDH*µK*L;

U2real,y = T2real,y *
kB

106
H*J*L;

H*Trapfrequencies due to angle Α and Β between the horizontal and the vertical beam;

same coefficient for zR and waist contribution because Η parameterHsee aboveL takes

care of this*L
Ωx = . 4

ermass

U1gr

waist1x2
+

U2gr

w2xnew
2

; Νx =
Ωx

2*Pi
;

Ωy = . 4

ermass

U1gr

waist1y2
+

U2gr

zRell2new
2

; Νy =
Ωy

2*Pi
;

Ωz = . 1

ermass
I2 U1grM� zRell@waist1x, waist1yD2 +

4*U2gr

w2znew
2

; Νz =
Ωz

2*Pi
;

H*Trapfrequencies due to angle Α and Β between the horizontal and the vertical beam

including also gravity in y directionHlowering of potential depthL*L
Ωygravity = . 4

ermass

U1real,y

waist1y2
+

U2real,y

zRell2new
2

; Νygravity =

Ωygravity

2*Pi
;

H*Heating rate in three dimension Theat=
1

3
*Trec*Gscmean; Trec=2*

Erec
kB

=101nK;

Erec=Hhbar*klaserL2�2m*LH*Phase-space-density and peak number density according to temperature,

atomnumber and trap frequencies*L
Theat =

1

3
*

h

Λ1064

2
*

1

ermass*kB
*HGscat1@0, 0, 0D + Gscat2@0, 0, 0DL;

psd =
hbar

kB*Tatom

3
* Natom *Ωx*Ωy*Ωz;

npeak = Natom *
ermass

2*Pi*kB*Tatom

3
2 *Ωx*Ωy*ΩzH*m-3*L;
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StyleFormA
NumberFormA

TableFormA98"Er DT Groundstate", "beams�angle", unit, "with gravity"<, 8<,9"U0,beam horizontal", T1gr, µK, T1real,y=, 9"U0,beam vertical", T2gr, µK, T2real,y=,9"Νx,axis horizontal ", Νx, s-1=, 9"Νy,axis vertical ", Νy, s-1, Νygravity=,9"Νz,axis axial", Νz, s-1=, 8phspden, psd, 1<, 9n0, npeak*10-6, cm-3=,8"Total scattering rate", Gscat1@0, 0, 0D + Gscat2@0, 0, 0D, 1�s<,9Heating rate, Theat*109, nK �s=, 8zRhorizontal, N@zRell@waist1x, waist1yDD*1000, mm<,8zRvertical, N@zRell@waist2x, waist2zDD*1000, mm<,8"mag. field gradient to levitate", Blev, G�cm<=,

TableSpacing ® 81, 1<E,

5E,

Background ® LightBlue, FontFamily ® "Times", FontWeight ® "Bold", FontSize ® 16E
Er DT Groundstate beams�angle unit with gravity

U0,beam horizontal 52.383 µK 47.101
U0,beam vertical 37.638 µK 0.81345

Νx,axis horizontal 618.85 1
s

Νy,axis vertical 1014.8 1
s

960.33

Νz,axis axial 237.73 1
s

phspden 0.8843 1

n0 2.4278 ´ 1015 1
cm3

Total scattering rate 0.012556 1
s

Heating rate 0.42652 nK
s

zRhorizontal 1.0198 mm
zRvertical 12.254 mm

mag. field gradient to levitate 4.1633 G
cm

Figures 81



FiguresH*Deformation of the horizontal beam potential Hy-directionL due to gravity*L
"Gravity on horizontal beam \ Gravity on vertical beam"

GraphicsRowA9
PlotAT1gravity@yD, 8y, -2*waist1y*10^6, 2*waist1y*10^6<, PlotRange ® Full,

AxesLabel ® 8"vertical position y@µmD", "total potential@µKD"<E,H*Deformation of the vertical beam potential Hy-directionL due to

gravity: angles Α and Β are included*L
PlotAT2gravity@yD, 8y, -2*zRell2new *10^6, 2*zRell2new *10^6<, PlotRange ® Full,

AxesLabel ® 8"vertical position y@µmD", "total potential@µKD"<E=E
"VerticalHyL potential � HorizontalHxL Potential � AxialHzL Potential "

GraphicsRowA9
Plot3DATpotgr1@x*10^-6, 0, z*10^-6D + Tpotgr2angle@x*10^-6, 0, z*10^-6D, 8z, -100, 100<,8x, -100, 100<, PlotRange ® Full, AxesLabel ® 9"z HµmL", "x HµmL", "Udip HµKL"=,

Mesh ® None, MaxRecursion ® 0, PlotPoints ® 815, 15<E,

Plot3DATpotgr1@0, y*10^-6, z*10^-6D + Tpotgr2angle@0, y*10^-6, z*10^-6D, 8z, -100, 100<,8y, -100, 100<, PlotRange ® Full, AxesLabel ® 9"z HµmL", "y HµmL", "Udip HµKL"=,

Mesh ® None, MaxRecursion ® 0, PlotPoints ® 815, 15<E,

Plot3DATpotgr1@x*10^-6, y*10^-6, 0D + Tpotgr2angle@x*10^-6, y*10^-6, 0D, 8x, -100, 100<,8y, -100, 100<, PlotRange ® Full, AxesLabel ® 9"x HµmL", "y HµmL", "Udip HµKL"=,
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We report on the achievement of Bose-Einstein condensation of erbium atoms and on the observation of

magnetic Feshbach resonances at low magnetic fields. By means of evaporative cooling in an optical dipole

trap, we produce pure condensates of 168Er, containing up to 7� 104 atoms. Feshbach spectroscopy reveals

an extraordinary rich loss spectrum with six loss resonances already in a narrow magnetic-field range up to

3 G. Finally, we demonstrate the application of a low-field Feshbach resonance to produce a tunable dipolar

Bose-Einstein condensate and we observe its characteristic d-wave collapse.

DOI: 10.1103/PhysRevLett.108.210401 PACS numbers: 03.75.Nt, 37.10.De, 51.60.+a, 67.85.Hj

Ultracold quantum gases have proven to be ideal
systems for observing spectacular many- and few-body
quantum effects. The large majority of these phenomena
rely on the high degree of control over the interparticle
interaction achieved with ultracold atoms. In the widely
used alkalis, ultracold atoms interact isotropically via a
short-range contact potential. A novel exciting frontier in
quantum gas experiments is to access unexplored physical
scenarios based on the anisotropic and long-range dipole-
dipole interaction (DDI) [1,2]. A dipolar quantum gas is
expected to exhibit fascinating phenomena, including
novel many-body quantum phases [3–6]. The DDI acts
in systems having sizable electric or magnetic dipole
moments [1].

In the context of ultracold atomic quantum gases,
pioneering experimental work on strong DDI has been
carried out with chromium atoms [7–9]. Magnetic lantha-
nides offer new possibilities for dipolar physics. In such
systems, the combination of a large magnetic moment and
a large atomic mass leads to a particularly strong dipolar
character. The demonstration of the first magneto-optical
trap of erbium atoms [10] stimulated growing interest in
such species for quantum gas experiments. Very recently, a
Bose-Einstein condensate (BEC) and a degenerate Fermi
gas of dysprosium have been produced [11,12]. We choose
erbium as a promising candidate for experiments on dipo-
lar quantum gases. This species has a number of very
appealing features, including a large magnetic moment �
of 7 times the Bohr magneton, several stable isotopes, a
rich energy level scheme [13] with a non-S electronic
ground state [14], and interesting cold collisional
phenomena [15,16].

In strongly magnetic atoms, the competition between the
DDI and the contact interaction is very important and gives
rise to many intriguing phenomena. The contact interaction
is determined by the s-wave scattering length a and can be
often tuned with external magnetic fields via Feshbach
resonances [17]. Tuning of a also controls the balance of
these two interactions. In the case of a novel species in

quantum gas experiments, Feshbach resonances and scat-
tering lengths are a priori unknown. Magnetic lanthanides
such as erbium with their large magnetic moments and
their non-S electronic ground states present a completely
unexplored terrain in ultracold scattering physics. Here the
anisotropic interaction is expected to give rise to novel
scattering scenarios, which are not accessible with alkali
atoms [18,19].
In this Letter, we report on the attainment of

Bose-Einstein condensation of erbium atoms and on the
observation of Feshbach resonances in the region of low
magnetic fields. We obtain pure optically trapped BECs of
168Er containing 7� 104 atoms. The remarkably high
efficiency of evaporative cooling in a standard optical
dipole trap indicates favorable scattering properties of the
168Er isotope. In addition, the magnetic Feshbach spectros-
copy provides first valuable information on the scattering
behavior of submerged-shell atoms at ultralow tempera-
tures. Moreover, we demonstrate low-field Feshbach tun-
ing of the contact interaction in our strongly dipolar BEC.
Our experimental procedure to create a BEC of Er

follows a simple and straightforward scheme, inspired by
work on Yb atoms [20,21]. Our starting point is the
narrow-line yellow magneto-optical trap (MOT) described
in our very recent work [22]; it operates on the 583 nm line
(natural linewidth 190 kHz). We choose this approach
because narrow-line MOTs permit us to obtain samples
with a large number of atoms at temperatures in the lower
microkelvin region. This allows a direct and efficient
transfer of atoms into optical dipole traps without the
need for additional cooling stages [20,21]. Our MOT gives
about 108 atoms at a temperature of 15 �K [23].
An additional very advantageous feature of our approach

is that the MOT light automatically pumps the atoms into
the lowest Zeeman sublevel mJ ¼ �6, where mJ is the
projection quantum number of the total electronic angular
momentum J ¼ 6. This effect results from the interplay
between gravity and weak radiation pressure, which leads
to a spatial down shift with respect to the zero of the
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magnetic quadrupole field [24] and thus to a preferential
absorption of the vertical MOT beam with �� polarization
[22]. The polarization of the sample is confirmed by
Stern-Gerlach-type measurements.

Our optical dipole trap geometry follows the concepts
originally applied in experiments with Yb BEC [20]. The
trap is created by crossing a tightly confining horizontal
beam (y axis) and a less focused vertical beam (z axis). The
basic idea is that initially the atoms are predominantly
trapped by the horizontal beam, whereas the vertical
beam provides confinement relevant in the final stage of
evaporation. The horizontal beam is derived from a 100 W
broadband Yb fiber laser operating at 1075 nm and has an
initial power of 10 W. The beam has an elliptic cross
section with a waist of 30ð40Þ �m along the vertical
(horizontal) direction. The vertical beam is produced by
a 10 W Yb fiber laser source at 1064 nm and has an initial
power of 8 W. The beam profile is elliptic with a waist of
55ð110Þ �m along (perpendicular to) the axis of the hori-
zontal beam.

We load the dipole trap during the MOT compression
phase. We observe that the time period in which the com-
pressed MOTand dipole trap coexist is crucial for efficient
loading. The number of atoms in the optical dipole trap
exponentially approaches its maximum value with a time
constant of about 150 ms. After 600 ms of loading, we turn
off the MOT beams and the quadrupole magnetic field, and
we switch on a weak homogeneous magnetic field of about
300 mG along the vertical direction to preserve the spin
polarization of the sample. We obtain 2:6� 106 atoms at a
temperature of 42 �K in the optical dipole trap. At this
point, the atoms are mainly trapped by the horizontal
beam. We measure oscillation frequencies ð�x; �y; �zÞ ¼
ð1:3; 0:016; 1:95Þ kHz; the potential depth is estimated to
be 560 �K. The peak density and the peak phase-space
density are 1:7� 1013 cm�3 and 1:6� 10�4, respectively.
These are our starting conditions for the evaporative
cooling process.

Forced evaporative cooling is performed by reducing the
power of the trapping beams in a nearly exponential ramp.
The overall evaporation sequence has a duration of 5.5 s
[25]. We then turn off the trapping beams and let the atomic
cloud expand before applying standard absorption imag-
ing. For imaging, we illuminate the atomic cloud with a
50-�s probe beam pulse [26]. The probe beam propagates
horizontally at an angle of 14� with respect to the propa-
gation axis (y axis) of the horizontal trapping beam.

The phase transition from a thermal cloud to BEC mani-
fests itself in a textbooklike bimodal distribution in the time-
of-flight absorption images. Figure 1 shows the absorption
images and the corresponding linear density profiles for
different final temperatures, i.e., for different stages of the
evaporation. At higher temperatures the atomic distribution
is thermal with the expected Gaussian profile resulting
from the Maxwell-Boltzmann distribution; see Fig. 1(a).

By cooling the atomic sample below the critical tempera-
ture, we clearly observe that the atomic density distribution
has a bimodal profile with a narrower and denser peak at the
center, which represents the BEC (b). By further evaporating
the sample, the BEC fraction continuously increases
(c) until the thermal component is not anymore discernible
and an essentially pure BEC is formed with 7� 104

atoms (d).
To analyze our data, we fit a bimodal distribution to the

integrated time-of-flight absorption images. This distribu-
tion consists of a Gaussian function, which accounts for the
thermal atoms, and an inverted integrated parabolic func-
tion for the BEC component in the Thomas-Fermi limit.
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FIG. 1 (color online). Absorption images and integrated
density profiles showing the BEC phase transition for different
evaporation times. The absorption images are an average of four
images taken after 24 ms of expansion. The color bar shows the
optical density. The solid lines are fits to the data using
Gaussian (a), bimodal (b) and (c), and Thomas-Fermi (d)
distribution. The dotted lines represent the Gaussian part of
the bimodal fit, describing the thermal atoms. From the fit
we extract: N ¼ 3:9� 105, T ¼ 1100 nK (a), N ¼ 2:1� 105,
T ¼ 408 nK (b), N ¼ 1:6� 105, T ¼ 222 nK (c), N ¼
6:8� 104 (d), where N is the total atom number. For (b) and
(c), we extract a condensate fraction of 5% and 20%, respectively.
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Just after the onset of quantum degeneracy (BEC fraction
�5%), we measure trap frequencies of ð�x; �y; �zÞ ¼
ð208; 70; 299Þ Hz, atom number of N ¼ 2:1� 105, and a
temperature of T ¼ 408 nK. The critical temperature of
417 nK as calculated from standard BEC theory (without
interaction shift) is consistent with this observation.

The evaporation efficiency is found to be remarkably
high as 3.5 orders of magnitude in phase-space density are
gained by losing a factor of 10 in atom number. This
observation already points to favorable scattering parame-
ters of the 168Er isotope. First evaporative cooling experi-
ments on the most abundant 168Er isotope reveal a lower
efficiency in the final stage of evaporation, suggesting that
a different strategy might be needed to reach BEC.

To gain insight into the ultracold collisional properties
of erbium we perform Feshbach spectroscopy [17] at low
magnetic fields. This measurement is done in a way that
allows us to identify both the poles and zero crossings of
Feshbach resonances [27,28]. The basic idea here is to
prepare the system at a variable target value of the mag-
netic field and then to rapidly (50 ms) decrease the depth of
the optical dipole trap by almost a factor of 2. The sample
stays near thermal equilibrium with an effective tempera-
ture of 2:2 �K but features a truncated energy distribution.
We then let the system evolve at a constant trap depth
for 250 ms, during which plain evaporative cooling and
inelastic losses can occur depending on the scattering
length. We finally switch off the trap and take time-of-
flight images to determine the temperature and number of
the atoms. The measurement is then repeated for variable
magnetic-field values. Such a Feshbach scan shows reso-
nance poles as loss features and zero crossings as tempera-
ture maxima.

Figure 2 shows the loss spectrum and the corresponding
temperatures in the low magnetic-field range up to 3.2 G
[29]. Already in this narrow magnetic-field range, the loss
spectrum is very rich. We identify six pronounced resonant
minima in the atom number that we interpret as being
caused by Feshbach resonances. For convenience, we de-
termine the resonance positions with Gaussian fits, yield-
ing 0.72, 0.91, 1.51, 2.16, 2.48, and 2.85 G. The loss
features show different strengths and widths. For the three
broader resonances at 0.91, 2.16, and 2.48 G, we also
observe the appearance of temperature maxima to the right
of the loss minima (arrows in Fig. 2). These temperature
maxima mark the zero crossings of the scattering length.
The other loss features are too narrow to provide clear
signatures of the zero crossing. From the difference in
positions between the minima in the atom number and
the maxima in temperature we estimate the widths � of
the resonances. We find � ¼ 65, 60, and 180 mG for the
resonances at 0.91, 2.16, and 2.48 G, respectively.

In a strongly dipolar atomic gas, universal dipolar scat-
tering is present [30–32], so that the total cross section for
elastic scattering does not vanish at the zero crossings of

the scattering length. For Er, a minimum cross section
�dip ¼ 8�ð30a0Þ2 results from universal dipolar scatter-

ing, where a0 is the Bohr radius. The fact that we observe
temperature maxima near the zero crossings suggests a
dominant role of s-wave scattering and not of dipolar
scattering. Preliminary cross-dimensional thermalization
measurements indeed point to a scattering length between
150 and 200a0.
The existence of Feshbach resonances at low magnetic

fields makes the manipulation of the contact interaction in
the Er BEC very convenient and straightforward. As a
proof-of-principle experiment, we explore the controlled
d-wave collapse of the BEC, following the procedure
successfully applied by the Stuttgart group [7]. We first
produce a pure BEC by evaporative cooling at 1.2 G, which
is above the position of the first broad Feshbach resonance
(0.91 G). Here we obtain 3� 104 atoms in the BEC,
indicating that forced evaporation at this magnetic field is
slightly less efficient. We then ramp down the magnetic
field within 2 ms to a variable target value and let the
sample evolve for 2 ms before switching off the trap. The
magnetic field is kept constant at its target value during the
first stage of the expansion (15 ms), where the main
dynamics happens. We then set the magnetic field along
the y axis and we image the atomic cloud after an addi-
tional 11 ms of expansion. Our results are summarized in
Fig. 3, where we show time-of-flight absorption images for
different values of the target magnetic field. We observe a
dramatic change in the shape of the condensate when the

FIG. 2 (color online). Observation of Feshbach resonances in
Er-Er collisions. The measured temperature (a) and atom
number (b) are plotted as a function of the magnetic field. The
minima in the atom number indicate the Feshbach resonance
poles, marked by the thin vertical lines. The maxima in the
temperatures to the right of the three stronger loss features
(arrows) are attributed to the respective zero crossings of the
scattering length. The varying background in the atom number is
presumably due to ramping effects caused by the sweep of the
magnetic field across the resonances.
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magnetic field is reduced towards the zero crossing of
the scattering length. At the magnetic field of evaporation,
the aspect-ratio of the cloud is close to the one observed at
zero magnetic field; see Fig. 3(a). By changing the mag-
netic field to lower target values, the BEC shows a more
and more anisotropic shape (b) and (c). Below a critical
magnetic-field value, the BEC develops a complicated
cloverleaf pattern (d)–(f) which is the striking signature
of the d-wave collapse in a dipolar BEC [7].

In conclusion, we have demonstrated the first BEC of
Er atoms and the tunability of its interparticle interaction
via Feshbach resonances. Our scattering data provide first
sensitive input to understand the complex collisional
behavior of submerged-shell atoms. The observation of
the d-wave collapse is very encouraging in view of future
experiments dedicated to the rich phenomena expected in
strongly dipolar quantum gases.
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